Elicitation of preference systems:
 Two procedures and their application to decision making under severe uncertainty

Christoph Jansen, Georg Schollmeyer \& Thomas Augustin

Abstract

In [1], we considered preference systems for modelling decision makers (DMs) with weakly structured preferences.
Now we present elicitation procedures enabling decision makers to report their underlying preference system while having to answer fewest possible simple ranking questions. Two different approaches are followed, based on either

- consideration times or
- labels of preference strength.

We briefly discuss applications to decision under uncertainty.
Quick tour: Only look at the gray boxes!

Preliminaries

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a finite set of consequences that choices of a decision maker could possibly yield.
For a binary relation $R \subset A \times A$ on A, we denote by

- $P_{R} \subseteq A \times A$ its strict part
- $I_{R} \subseteq A \times A$ its indifference part
- $C_{R} \subseteq A \times A$ its incomparable part
- $H_{R} \subseteq A \times A$ its transitive hull

Definition $1 A$ triplet $\mathcal{A}=\left[A, R_{1}, R_{2}\right]$ where $R_{1} \subseteq A \times A$ is a pre-order on A and $R_{2} \subseteq R_{1} \times R_{1}$ is a pre-order on R_{1} is called a preference system on A.
Interpretation of preference systems:

- $(a, b) \in R_{1}$: " a at least as desirable as b " (ordinal part)
- $((a, b),(c, d)) \in R_{2}$: "exchanging b by a is at least as desirable as exchanging d by $c^{\prime \prime}$ (cardinal part)

Definition $2 \mathcal{A}=\left[A, R_{1}, R_{2}\right]$ is called consistent if there exists a function $u: A \rightarrow[0,1]$ such that for all $a, b, c, d \in A$.
i) $(a, b) \in R_{1}$ imples $u(a) \geq u(b)$ with equality iff $(a, b) \in I_{R_{1}}$.
ii) $((a, b),(c, d)) \in R_{2}$ implies $u(a)-u(b) \geq u(c)-u(d)$ with equality iff $((a, b),(c, d)) \in I_{R_{2}}$.
The set of all such u is denoted by $\mathcal{U}_{\mathcal{A}}$.
Comment: Consistency can be checked by solving one linear
optimization problem (see [1, Proposition 1]).

References

[1] C. Jansen, G. Schollmeyer, and T. Augustin. Concepts for deciSion making under severe uncertainty with partial ordinal and Reasoning, 98:112-131, 2018.
Further relevant references are given in [1].

MAIN QUESTION \& IDEA

Goal: Elicit the decision maker's true preference system $\mathcal{A}^{*}=\left[A, R_{1}^{*}, R_{2}^{*}\right]$
by asking as few as possible ranking questions about R_{1}^{*} Two different approaches:
A1: For every presented pair $\left\{a_{i}, a_{j}\right\}$ with $\left(a_{i}, a_{j}\right) \in R_{1}^{*}$, we measure the DM's consideration time $t_{i j}>0$ and use these times for constructing R_{2} (hopefully matching R_{2}^{*}).
A2: For every presented pair $\left\{a_{i}, a_{j}\right\}$ with $\left(a_{i}, a_{j}\right) \in R_{1}^{*}$, collect a label of preference strength and utilize the collected labels for constructing R_{2} (hopefully matching R_{2}^{*})

Assumptions for A1

Intuition: The stonger the DM prefers a_{i} over a_{j}, the lower is the consideration time $t_{i j}$. More formal:
Assumption 1 For $\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right) \in R_{1}^{*}$ the following holds:
i) $t_{k l}>t_{i j}>0$ if and only if $\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in P_{R_{2}^{*}}$
ii) $t_{k l}=t_{i j}>0$ if and only if $\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in I_{R_{2}^{*}}$
iii) $t_{i j}=t_{j i}=c_{\infty}$ if and only if $\left(a_{i}, a_{j}\right) \in I_{R_{1}^{*}}$

Assumption 2 For $\left(a_{i}, a_{j}\right),\left(a_{j}, a_{k}\right) \in P_{R_{1}^{*}}$ we have $\frac{1}{t_{i j}}+\frac{1}{t_{j k}}$ $\frac{1}{t_{i k}}$, whenever $\left(a_{i}, a_{k}\right) \in P_{R_{1}^{*}}$

Assumption 3 For $\left(a_{i}, a_{j}\right) \in I_{R_{1}^{*}}$ we have
i) $t_{k i}=t_{k j}$ whenever $\left(a_{k}, a_{i}\right),\left(a_{k}, a_{j}\right) \in P_{R_{1}^{*}}$ and
ii) $t_{i k}=t_{j k}$ whenever $\left(a_{i}, a_{k}\right),\left(a_{j}, a_{k}\right) \in P_{R_{1}^{*}}$.

Assumptions for A2

Intuition: DM assigns a label $\ell_{r}^{i j} \in \mathcal{L}_{r}:=\{\mathbf{n}, \mathbf{c}, 0,1, \ldots, r\}$ to every $\left(a_{i}, a_{j}\right)$ by labelling function $\ell_{r}: A \times A \rightarrow \mathcal{L}_{r}$

n : non-comparable

strict preference of unknown strength indifferent
$1, \ldots, r$: strict preference of increasing strength
Assumption 4 It holds that
i) $\left(a_{i}, a_{j}\right) \in I_{R_{1}^{*}} \Leftrightarrow \ell_{r}^{i j}=0$
ii) $\left(a_{i}, a_{j}\right) \in P_{R_{1}^{*}} \Leftrightarrow \ell_{r}^{i j} \in \mathcal{L}_{r} \backslash\{\mathbf{n}, 0\} \wedge \ell_{r}^{j i}=\mathbf{n}$
iii) $\left(a_{i}, a_{j}\right) \in C_{R_{1}^{*}} \Leftrightarrow \ell_{r}^{i j}=\ell_{r}^{j i}=\mathbf{n}$

Assumption 5 For all $\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right) \in R_{1}^{*}$ the following holds: i) $\ell_{r}^{i j}>\ell_{r}^{k l} \Rightarrow \quad\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in P_{R_{2}^{*}}$
ii) $\ell_{r}^{i j}=\ell_{r}^{k l}=0 \Rightarrow\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in I_{R_{2}^{*}}$
iii) $\ell_{r}^{i j}=\mathbf{c} \vee \ell_{r}^{k l}=\mathbf{c} \quad \Leftrightarrow \quad\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in C_{R}$

Assumption 6 For all $\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in P_{R_{2}^{*}}$ the statement $\ell_{r}^{i j}=\ell_{r}^{k l}=x \notin\{0, \mathbf{n}, \mathbf{c}\}$ implies that $\{1, \ldots, r\} \subset \ell_{r}(A \times A)$

A1: UTILIZING META DATA ON CONSIDERATION TIME

Procedure 1: Start with empty relations $R_{1}=\emptyset$ and $C=\emptyset$ and ask the DM successively about the preferences between all pairs $\left\{a_{i}, a_{j}\right\} \in A_{\{2\}}$ of consequences, where $A_{\{2\}}:=\{\{a, b\}: a \neq b \in A\}$. There are four possibilities:
i) DM judges a_{i} and a_{j} incomparable. Set $C=C \cup\left\{\left(a_{j}, a_{i}\right),\left(a_{i}, a_{j}\right)\right\}$ and $t_{i j}=t_{j i}=0$.
ii) DM ranks a_{i} strictly better than a_{j}. Set $R_{1}=R_{1} \cup\left\{\left(a_{i}, a_{j}\right)\right\}$ and measure consideration time $t_{i j}>0$. Set $t_{j i}=0$.
iii) DM ranks a_{j} strictly better than a_{i}. Set $R_{1}=R_{1} \cup\left\{\left(a_{j}, a_{i}\right)\right\}$ and measure consideration time $t_{j i}>0$. Set $t_{i j}=0$.
iv) DM is indifferent between a_{j} and a_{i}. Set $R_{1}=R_{1} \cup\left\{\left(a_{i}, a_{j}\right),\left(a_{j}, a_{i}\right)\right\}$ and $t_{i j}=t_{j i}=c_{\infty}>\max \left\{t_{p q}:\left(a_{p}, a_{q}\right) \in P_{R_{1}^{*}}\right\}$.

Define R_{2} by setting $\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in R_{2} \quad: \Leftrightarrow \quad t_{k l}-t_{i j} \geq 0 \wedge t_{i j}>0$.
Findings for Procedure 1:
Proposition 1 Under Assumption 1, Procedure 1 produces the DM's true preference system $\mathcal{A}^{*}=\left[A, R_{1}^{*}, R_{2}^{*}\right]$.
Proposition 2 Under Assumptions 1, 2 and 3 the $D M^{\prime}$'s true preference system $\mathcal{A}^{*}=\left[A, R_{1}^{*}, R_{2}^{*}\right]$ is consistent if and only if R_{1}^{*} is transitive.

Procedure 1*: Suppose after k steps of Procedure 1 we have elicited R_{1}^{k} and C^{k}. Sample the next pair to present from

$$
A_{\{2\}} \backslash\left\{\{a, b\}:(a, b) \in H_{R^{k}} \vee(b, a) \in H_{R^{k}} \vee(a, b) \in C^{k}\right\}
$$

and compute the missing times by using Assumption 2.
Findings for Procedure 1*:
Proposition 3 Under Assumptions 1, 2 and 3, Procedure 1^{*} terminates in \mathcal{A}^{*} if and only if R_{1}^{*} is transitive.

A2: UTILIZING LABELS OF PREFERENCE STRENGTH

Procedure 2: Consider a DM with labelling function $\ell_{r}: A \times A \rightarrow \mathcal{L}_{r}$. Start with two empty relations $R_{1}=\emptyset$ and $R_{2}=\emptyset$ and ask the DM successively about the preferences between all pairs $\left(a_{i}, a_{j}\right) \in A \times A$. There are the following possibilities:
i) If $\ell_{r}^{i j} \in \mathcal{L}_{r} \backslash\{\mathbf{n}, 0\}$, set $R_{1}=R_{1} \cup\left\{\left(a_{i}, a_{j}\right)\right\}$.
ii) If $\ell_{r}^{i j}=0$, set $R_{1}=R_{1} \cup\left\{\left(a_{i}, a_{j}\right),\left(a_{j}, a_{i}\right)\right\}$.
iii) If $\ell_{r}^{i j}=\mathbf{n}$, set $R_{1}=R_{1}$.

Define R_{2} by setting $\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in R_{2} \quad: \Leftrightarrow \quad \ell_{r}^{i j}>\ell_{r}^{k l} \vee \ell_{r}^{i j}=\ell_{r}^{k l}=0$

Findings for Procedure 2:

Proposition 4 The following two statements hold true:
i) If, for some $r \in \mathbb{N}, \ell_{r}: A \times A \rightarrow \mathcal{L}_{r}$ satisfies assumptions 4 and 5 , then Procedure 2 produces a sub-system of the decision maker's true preference system \mathcal{A}^{*}. Particularly, the procedure produces a consistent preference system whenever \mathcal{A}^{*} is consistent.
ii) There exists $r_{0} \in \mathbb{N}$ such that if $\ell_{r_{0}}: A \times A \rightarrow \mathcal{L}_{r_{0}}$ satisfies assumptions 4, 5 and 6 , then Procedure 2 produces the true \mathcal{A}^{*}.

OUTLOOK: DECISION MAKING UNDER SEVERE UNCERTAINTY

Situation: Suppose we have two uncertain acts $X_{1}, X_{2}: S \rightarrow A$ and some probability π on S. To check if

(*) $\forall u \in \mathcal{U}_{\mathcal{A}^{*}}: \mathbb{E}_{\pi}\left(u \circ X_{1}\right) \geq \mathbb{E}_{\pi}\left(u \circ X_{2}\right.$

holds, we can proceed as follows: Denote by $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots$ the preference system after step $1,2, \ldots$ of Procedure 1 or 2 .
As this implies $\mathcal{U}_{\mathcal{A}_{1}} \supseteq \mathcal{U}_{\mathcal{A}_{2}} \supseteq \ldots$, after each step k of the Procedure we can check (see [1, Prop. 5 i)]) if

$$
\forall u \in \mathcal{U}_{\mathcal{A}_{k}}: \quad \mathbb{E}_{\pi}\left(u \circ X_{1}\right) \geq \mathbb{E}_{\pi}\left(u \circ X_{2}\right)
$$

and directly conclude (\star) if so.
DM solves problem by only answering simple ranking questions about $\mathbf{R}_{1}^{*}!$

