Elicitation of preference systems: Two procedures and their application to decision making under severe uncertainty

CHRISTOPH JANSEN, GEORG SCHOLLMEYER & THOMAS AUGUSTIN

ABSTRACT

In [1], we considered **preference systems** for modelling decision makers (DMs) with weakly structured preferences.

Now we present elicitation procedures enabling decision makers to report their underlying preference system while having to answer **fewest possible simple ranking questions**. Two different approaches are followed, based on either

- consideration times or
- labels of preference strength.

We briefly discuss applications to decision under uncertainty.

Quick tour: Only look at the gray boxes!

PRELIMINARIES

Let $A = \{a_1, \ldots, a_n\}$ be a finite set of consequences that choices of a decision maker could possibly yield.

For a binary relation $R \subset A \times A$ on A, we denote by

- $P_R \subseteq A \times A$ its strict part
- $I_R \subseteq A \times A$ its indifference part
- $C_R \subseteq A \times A$ its incomparable part
- $H_R \subseteq A \times A$ its transitive hull

Definition 1 A triplet $\mathcal{A} = [A, R_1, R_2]$ where $R_1 \subseteq A \times A$ is a pre-order on A and $R_2 \subseteq R_1 \times R_1$ is a pre-order on R_1 is called a **preference system** on A.

Interpretation of preference systems:

- $(a, b) \in R_1$: "*a* at least as desirable as *b*" (ordinal part)
- $((a,b), (c,d)) \in R_2$: "exchanging b by a is at least as desirable as exchanging *d* by *c*" (cardinal part)

Definition 2 $\mathcal{A} = [A, R_1, R_2]$ is called **consistent** if there exists a function $u: A \rightarrow [0, 1]$ such that for all $a, b, c, d \in A$:

i) $(a,b) \in R_1$ imples $u(a) \ge u(b)$ with equality iff $(a,b) \in I_{R_1}$.

ii) $((a,b), (c,d)) \in R_2$ implies $u(a) - u(b) \geq u(c) - u(d)$ with equality iff $((a, b), (c, d)) \in I_{R_2}$.

The set of all such u is denoted by $\mathcal{U}_{\mathcal{A}}$.

Comment: Consistency can be checked by solving one linear optimization problem (see [1, Proposition 1]).

REFERENCES

[1] C. Jansen, G. Schollmeyer, and T. Augustin. Concepts for decision making under severe uncertainty with partial ordinal and partial cardinal preferences. International Journal of Approximate *Reasoning*, 98:112 – 131, 2018.

Further relevant references are given in [1].

MAIN QUESTION & IDEA

Goal: Elicit the decision maker's true preference system $\mathcal{A}^* = [A, R_1^*, R_2^*]$ by asking as few as possible ranking questions about R_1^* .

Two different approaches:

times for constructing R_2 (hopefully matching R_2^*).

labels for constructing R_2 (hopefully matching R_2^*).

ASSUMPTIONS FOR A1

is the consideration time t_{ij} . More formal:

Assumption 1 For (a_i, a_j) , $(a_k, a_l) \in R_1^*$ the following holds:

- *i*) $t_{kl} > t_{ij} > 0$ *if and only if* $((a_i, a_j), (a_k, a_l)) \in P_{R_2^*}$
- *ii)* $t_{kl} = t_{ij} > 0$ *if and only if* $((a_i, a_j), (a_k, a_l)) \in I_{R_2^*}$
- *iii)* $t_{ij} = t_{ji} = c_{\infty}$ *if and only if* $(a_i, a_j) \in I_{R_1^*}$

Assumption 2 For (a_i, a_j) , $(a_j, a_k) \in P_{R_1^*}$ we have $\frac{1}{t_{ij}} + \frac{1}{t_{ik}} =$ $\frac{1}{t_{ik}}$, whenever $(a_i, a_k) \in P_{R_1^*}$.

Assumption 3 For $(a_i, a_j) \in I_{R_1^*}$ we have

i) $t_{ki} = t_{kj}$ whenever $(a_k, a_i), (a_k, a_j) \in P_{R_1^*}$ and *ii)* $t_{ik} = t_{jk}$ whenever $(a_i, a_k), (a_j, a_k) \in P_{R_1^*}$.

ASSUMPTIONS FOR A2

Intuition:	DM assigns a labe
to every (a	(a_i, a_j) by labelling f
n :	non-comparable
c :	strict preference o
0:	indifferent
$1,\ldots,r:$	strict preference of

Assumption 4 It holds that

i) $(a_i, a_j) \in I_{R_1^*} \Leftrightarrow \ell_r^{ij} = 0$ *ii)* $(a_i, a_j) \in P_{R_1^*} \iff \ell_r^{ij} \in \mathcal{L}_r \setminus \{\mathbf{n}, 0\} \land \ell_r^{ji} = \mathbf{n}$ *iii)* $(a_i, a_j) \in C_{R_1^*} \Leftrightarrow \ell_r^{ij} = \ell_r^{ji} = \mathbf{n}$ **Assumption 5** For all (a_i, a_j) , $(a_k, a_l) \in R_1^*$ the following holds: *i*) $\ell_r^{ij} > \ell_r^{kl} \implies ((a_i, a_j), (a_k, a_l)) \in P_{R_2^*}$ *ii)* $\ell_r^{ij} = \ell_r^{kl} = 0 \implies ((a_i, a_j), (a_k, a_l)) \in I_{R_2^*}$ *iii)* $\ell_r^{ij} = \mathbf{c} \lor \ell_r^{kl} = \mathbf{c} \iff ((a_i, a_j), (a_k, a_l)) \in C_{R_2^*}$

Assumption 6 For all $((a_i, a_j), (a_k, a_l)) \in P_{R_2^*}$ the statement $\ell_r^{ij} = \ell_r^{kl} = x \notin \{0, \mathbf{n}, \mathbf{c}\}$ implies that $\{1, \ldots, r\} \subset \ell_r(A \times A)$.

A1: For every presented pair $\{a_i, a_j\}$ with $(a_i, a_j) \in R_1^*$, we measure the DM's **consideration time** $t_{ij} > 0$ and use these

A2: For every presented pair $\{a_i, a_j\}$ with $(a_i, a_j) \in R_1^*$, collect a label of **preference strength** and utilize the collected

Intuition: The stonger the DM prefers a_i over a_j , the lower

 $l \ell_r^{ij} \in \mathcal{L}_r := \{\mathbf{n}, \mathbf{c}, 0, 1, \dots, r\}$ function $\ell_r : A \times A \to \mathcal{L}_r$:

f unknown strength

f increasing strength

A1: UTILIZING META DATA ON CONSIDERATION TIME

Procedure 1: Start with empty relations $R_1 = \emptyset$ and $C = \emptyset$ and ask the DM successively about the preferences between all pairs $\{a_i, a_j\} \in A_{\{2\}}$ of consequences, where $A_{\{2\}} := \{\{a, b\} : a \neq b \in A\}$. There are four possibilities: i) DM judges a_i and a_j incomparable. Set $C = C \cup \{(a_j, a_i), (a_i, a_j)\}$ and $t_{ij} = t_{ji} = 0$. ii) DM ranks a_i strictly better than a_j . Set $R_1 = R_1 \cup \{(a_i, a_j)\}$ and measure consideration time $t_{ij} > 0$. Set $t_{ji} = 0$. iii) DM ranks a_j strictly better than a_i . Set $R_1 = R_1 \cup \{(a_j, a_i)\}$ and measure consideration time $t_{ji} > 0$. Set $t_{ij} = 0$. iv) DM is indifferent between a_j and a_i . Set $R_1 = R_1 \cup \{(a_i, a_j), (a_j, a_i)\}$ and $t_{ij} = t_{ji} = c_{\infty} > \max\{t_{pq} : (a_p, a_q) \in P_{R_1^*}\}$. Define R_2 by setting $((a_i, a_j), (a_k, a_l)) \in R_2 \quad :\Leftrightarrow \quad t_{kl} - t_{ij} \geq 0 \land t_{ij} > 0.$

Findings for Procedure 1:

Proposition 1 Under Assumption 1, Procedure 1 produces the DM's true preference system $\mathcal{A}^* = [A, R_1^*, R_2^*]$.

Proposition 2 Under Assumptions 1, 2 and 3 the DM's true preference system $\mathcal{A}^* = [A, R_1^*, R_2^*]$ is consistent if and only if R_1^* is transitive.

Procedure 1^{*}: Suppose after k steps of Procedure 1 we have elicited R_1^k and C^k . Sample the next pair to present from $A_{\{2\}} \setminus \{\{a, b\} : (a, b) \in H_{R^k} \lor (b, a) \in H_{R^k} \lor (a, b) \in C^k\}$

and *compute* the missing times by using Assumption 2.

Findings for Procedure 1*:

Proposition 3 Under Assumptions 1, 2 and 3, Procedure 1^* terminates in \mathcal{A}^* if and only if R_1^* is transitive.

A2: UTILIZING LABELS OF PREFERENCE STRENGTH

Procedure 2: Consider a DM with labelling function $\ell_r : A \times A \to \mathcal{L}_r$. Start with two empty relations $R_1 = \emptyset$ and $R_2 = \emptyset$ and ask the DM successively about the preferences between all pairs $(a_i, a_j) \in A \times A$. There are the following possibilities:

- i) If $\ell_r^{ij} \in \mathcal{L}_r \setminus \{\mathbf{n}, 0\}$, set $R_1 = R_1 \cup \{(a_i, a_j)\}$.
- ii) If $\ell_r^{ij} = 0$, set $R_1 = R_1 \cup \{(a_i, a_j), (a_j, a_i)\}$.
- iii) If $\ell_r^{ij} = \mathbf{n}$, set $R_1 = R_1$.

Define R_2 by setting $((a_i, a_j), (a_k, a_l)) \in R_2 \quad :\Leftrightarrow \quad \ell_r^{ij} > \ell_r^{kl} \quad \lor \quad \ell_r^{ij} = \ell_r^{kl} = 0$

Findings for Procedure 2:

Proposition 4 *The following two statements hold true:*

- *i)* If, for some $r \in \mathbb{N}$, $\ell_r : A \times A \to \mathcal{L}_r$ satisfies assumptions 4 and 5, then Procedure 2 produces a sub-system of the decision maker's true preference system A^* . Particularly, the procedure produces a consistent preference system whenever A^* is consistent.
- *ii)* There exists $r_0 \in \mathbb{N}$ such that if $\ell_{r_0} : A \times A \to \mathcal{L}_{r_0}$ satisfies assumptions 4, 5 and 6, then Procedure 2 produces the true \mathcal{A}^* .

OUTLOOK: DECISION MAKING UNDER SEVERE UNCERTAINTY

Situation: Suppose we have two uncertain acts $X_1, X_2 : S \to A$ and some probability π on S. To check if $(\star) \ \forall u \in \mathcal{U}_{\mathcal{A}^*} : \quad \mathbb{E}_{\pi}(u \circ X_1) \ge \mathbb{E}_{\pi}(u \circ X_2)$

holds, we can proceed as follows: Denote by A_1, A_2, \ldots the preference system after step $1, 2, \ldots$ of Procedure 1 or 2. As this implies $\mathcal{U}_{A_1} \supseteq \mathcal{U}_{A_2} \supseteq \ldots$, after each step *k* of the Procedure we can check (see [1, Prop. 5 i)]) if $\forall u \in \mathcal{U}_{\mathcal{A}_k} : \quad \mathbb{E}_{\pi}(u \circ X_1) \ge \mathbb{E}_{\pi}(u \circ X_2)$

and directly conclude (\star) if so.

DM solves problem by only answering simple ranking questions about R_1^* !

LUDWIG-MAXIMILIANS UNIVERSITÄT