
Robust Statistical Comparison of Random Variables
with Locally Varying Scale of Measurement

Christoph Jansen1 Georg Schollmeyer1 Hannah Blocher1 Julian Rodemann1 Thomas Augustin1

1Department of Statistics, Ludwig-Maximilians-Universität, Munich, Bavaria, Germany

Abstract

Spaces with locally varying scale of measurement,
like multidimensional structures with differently
scaled dimensions, are pretty common in statis-
tics and machine learning. Nevertheless, it is still
understood as an open question how to exploit
the entire information encoded in them properly.
We address this problem by considering an order
based on (sets of) expectations of random variables
mapping into such non-standard spaces. This or-
der contains stochastic dominance and expectation
order as extreme cases when no, or respectively
perfect, cardinal structure is given. We derive a
(regularized) statistical test for such generalized
stochastic dominance, operationalize it by linear
optimization, and robustify it by imprecise prob-
ability models. Our findings are illustrated with
data from multidimensional poverty measurement,
finance, and medicine.

1 INTRODUCTION

Numerous challenges in statistics and machine learning can –
at least theoretically – be broken down to comparing random
variables X,Y : Ω → A mapping between measurable
spaces (Ω, ,S1) and (A,S2). Consequently, much attention
has been paid to find and apply well-founded stochastic
orderings enabling such comparison. Examples range from
classifier comparisons (e.g., Demsar [2006], Eugster et al.
[2012], or Corani et al. [2017]) over ranking risky assets
(e.g., Chang et al. [2015]) to deriving optimal (generalized)
Neyman-Pearson tests (e.g., [Augustin et al., 2014b, §7.4]).

In the traditional case where the context allows to specify
both a probability π on S1, and a cardinal scale u : A → R
representing the structure on A, a common order ≿E(u) on{
X ∈ AΩ : u ◦X ∈ L1(Ω,S1, π)

}
is obtained by setting

(X,Y ) ∈≿E(u) if and only if

Eπ(u◦X) =

∫
Ω

u◦Xdπ ≥
∫
Ω

u◦Y dπ = Eπ(u◦Y ). (1)

Here, random variables are ranked according to the expecta-
tions of their numerical equivalents induced by the scale u.
We take the following perspective: This order ≿E(u) would
be the desired order if (and only if) we were confronted
with a problem under pure aleatoric uncertainty where a
probability π and a cardinal scale u were available.

Our paper addresses all situations where, in addition, epis-
temic uncertainty has to be taken into account. Then, such
single π and u (and consequently the expectations in (1))
are not available, rendering a comparison by ≿E(u) im-
possible. This non-availability corresponds to two facets
(e.g. Hüllermeier and Waegeman [2021]) of epistemic un-
certainty: Referring to π, approximation uncertainty arises
since – as common in statistics – only samples of the con-
sidered variables are available.1 Concerning u, on the other
hand, model uncertainty is assumed to occur from weakly
structured order information, making a non-singleton set U
of candidate scales compatible with the structure on A.

Naturally, such situations can be approached in two steps:
Focusing– in the first step – on model uncertainty, and thus
assuming π still to be known, the order ≿E(u) can be weak-
ened to a pre-order ≿(U,π) on{

X ∈ AΩ : u ◦X ∈ L1(Ω,S1, π) ∀u ∈ U
}

by setting (X,Y ) ∈≿(U,π) if and only if Inequality (1)
holds for all candidate scales u ∈ U . Depending on the
concrete choice of the set U , the relation ≿(U,π) has some
prominent special cases: If A is equipped with a pre-order,
and U is the set of all functions that are bounded and iso-
tone w.r.t. this pre-order, then ≿(U,π) is (essentially) equiv-
alent to (first-order) stochastic dominance. In contrast, if

1In Section 6 we go beyond approximation uncertainty and
consider robustification by a candidate set of probabilities.

Preprint. Copyright by the authors.

mailto:<christoph.jansen@stat.uni-muenchen.de>


(A,S2) = (R,BR) and U consists of all bounded and con-
cave functions, then ≿(U,π) (essentially) corresponds to
second-order stochastic dominance.

If – in a second step – information about π comes only from
samples from the distributions of X and Y , then, instead
of the order ≿(U,π), one has to rely on the corresponding
empirical version. Then, a statistical test is needed to control
the probability of wrong conclusions from the data.

Our contribution: We consider generalized stochastic dom-
inance (GSD) that ensures exploiting the entire information
encoded in data with locally varying scale of measurement.
For that purpose, we (primarily) focus, technically speaking,
on that specific class of pre-orders ≿(U,π) where U is the
set of representations of a preference system (cf. Sections
2 to 4). Then, using linear optimization, we derive a corre-
sponding (regularized) test (cf. Section 5) and robustify it re-
lying on imprecise probabilities (cf. Section 6). Particularly,
our framework allows handling multidimensional struc-
tures with differently scaled dimensions in an information-
efficient way (cf. Section 7). We illustrate this with data
from multidimensional poverty measurement, finance, and
medicine (cf. Section 8 and Supp. D) and conclude with
a brief discussion (cf. Section 9). The proofs of Observa-
tions 1 and 2, Propositions 1 to 6, and Corollary 1 can be
found in the supplementary material (cf., Supp. A). Our
code is available under: https://anonymous.4open.
science/r/Robust_GSD_Tests

Related work: Work on tests and/or checking algorithms
for stochastic dominance (SD) outside preference systems
includes McFadden [1989], Mosler and Scarsini [1991],
Mosler [1995], Barrett and Donald [2003], Schollmeyer et al.
[2017], Range and Østerdal [2019]. Optimization under SD
constraints was recently considered by, e.g., Dai et al. [2023].
Preference systems and related structures are discussed in a
decision theoretic context in Pivato [2013] and Jansen et al.
[2018]. A test for GSD in the special case of a preference
system arising from multiple quality metrics in classifier
comparison is discussed in Jansen et al. [2022a].

Neighborhood models that are used to robustify tests are
studied in e.g., Destercke et al. [2022], Augustin and
Schollmeyer [2021], Montes et al. [2020]. Among others,
Maua and de Campos [2021], Cabanas et al. [2020], Maua
and Cozman [2020] study credal networks as robustifica-
tions of Bayesian networks, and, e.g., Utkin and Konstanti-
nov [2022], Carranza and Destercke [2021], Utkin [2020],
Abellan et al. [2018] have proposed robustifications and
extensions of other machine learning procedures like forests
or discriminant analyses by imprecise probabilities.

Accounting for both approximation uncertainty and model
uncertainty is in line with recent deliberations in uncertainty
quantification (e.g., Malinin and Gales [2018], Hüllermeier
and Waegeman [2021], Bengs et al. [2022], Hüllermeier
et al. [2022]).

2 BACKGROUND & PRELIMINARIES

We will consider binary relations at several points, relying
on the following notation and terminology: A binary relation
R on a set M ̸= ∅ is a subset of the Cartesian product of
M with itself, i.e. R ⊆ M × M . R is called reflexive, if
(a, a) ∈ R, transitive, if (a, b), (b, c) ∈ R ⇒ (a, c) ∈ R,
antisymmetric, if (a, b), (b, a) ∈ R ⇒ a = b, complete, if
(a, b) ∈ R or (b, a) ∈ R (or both) for arbitrary elements
a, b, c ∈ M . A preference relation is a binary relation that
is complete and transitive; a pre-order is a binary relation
that is reflexive and transitive; a linear order is a preference
relation that is antisymmetric; a partial order is a pre-order
that is antisymmetric. If R is a pre-order, we denote by
PR ⊆ M × M its strict part and by IR ⊆ M × M its
indifference part, defined by (a, b) ∈ PR ⇔ (a, b) ∈ R ∧
(b, a) /∈ R, and (a, b) ∈ IR ⇔ (a, b) ∈ R ∧ (b, a) ∈ R.

This leads us to the central ordering structure under consider-
ation in the present paper, namely preference systems. These
formalize the idea of spaces with locally varying scale of
measurement and were introduced in Jansen et al. [2018].2

Definition 1 Let A ̸= ∅ be a set, R1 ⊆ A × A a pre-
order on A, and R2 ⊆ R1 × R1 a pre-order on R1. The
triplet A = [A,R1, R2] is then called a preference system
on A. We call A bounded, if there exist a∗, a∗ ∈ A such
that (a∗, a) ∈ R1, and (a, a∗) ∈ R1 for all a ∈ A, and
(a∗, a∗) ∈ PR1

. Moreover, the preference system A′ =
[A′, R′

1, R
′
2] is called subsystem of A if A′ ⊆ A, R′

1 ⊆ R1,
and R′

2 ⊆ R2. In this case, we call A a supersystem of A′.

The concrete definition of a preference system now also
makes it possible to concretize the idea of a space with
locally varying scale of measurement: While the relation R1

formalizes the available ordinal information, i.e. information
about the arrangement of the elements of A, the relation R2

describes the cardinal part of the information in the sense
that pairs standing in relation are ordered with respect to
the intensity of the relation. Thus, intuitively speaking, the
set A is locally almost cardinally ordered on subsets where
R1 and R2 are very dense, while on subsets where R2 is
sparse or even empty, locally at most an ordinal scale of
measurement can be assumed.

To ensure that R1 and R2 are compatible, we use a consis-
tency criterion for preference systems relying on the idea
that both relations should be simultaneously representable.

Definition 2 The preference system A = [A,R1, R2] is
consistent if there exists a representation u : A → R such
that for all a, b, c, d ∈ A we have:

i) If we have that (a, b) ∈ R1, then it holds that u(a) ≥
u(b), where equality holds if and only if (a, b) ∈ IR1

.
2For a study on representation results of the related concept of

incomplete difference pre-orders see, e.g., Pivato [2013].

https://anonymous.4open.science/r/Robust_GSD_Tests
https://anonymous.4open.science/r/Robust_GSD_Tests


ii) If we have that ((a, b), (c, d)) ∈ R2, then it holds that
u(a) − u(b) ≥ u(c) − u(d), where equality holds if
and only if ((a, b), (c, d)) ∈ IR2

.

The set of all representations of A is denoted by UA.

Especially when regularizing our test statistic in Section 5,
normalized versions of the set UA play a crucial role.

Definition 3 Let A = [A,R1, R2] be a consistent and
bounded preference system with a∗, a

∗ as before. Then

NA :=
{
u ∈ UA : u(a∗) = 0 ∧ u(a∗) = 1

}
is called the normalized representation set of A. Further,
for δ ∈ [0, 1), we denote by N δ

A the set of all u ∈ NA with

u(a)− u(b) ≥ δ ∧ u(c)− u(d)− u(e) + u(f) ≥ δ

for all (a, b) ∈ PR1
and for all ((c, d), (e, f)) ∈ PR2

. We
call A δ-consistent if N δ

A ̸= ∅.

We conclude the section with an immediate observation of
the connection between consistency and 0-consistency.

Observation 1 Let A = [A,R1, R2] be a bounded pref-
erence system. Then A is consistent if and only if it is 0-
consistent.

3 REGULARIZATION

We now discuss some thoughts on regularization in prefer-
ence systems. Since our later considerations primarily con-
cern statistical testing, regularization then aims at making
the test statistic more sensitive, i.e., to increase discrimina-
tive power. In principle, two different ways of regularization
are conceivable: On the one hand, an order-theoretic regu-
larization could be carried out by extending the considered
preference system by additional comparable pairs (or pairs
of pairs) to a consistent super system. On the other hand,
a parameter-driven regularization could be performed to
reduce the set of representations of the preference system.
Both ways are schematically compared in Figure 1.

Figure 1: Two ways for regularizing a preference system.

Both approaches have their own strengths and weaknesses:
In the case of order-theoretic regularization, the influence

of the regularization on the content-related question can be
controlled very precisely. However, this comes at the price
that the concrete mathematical influence of the regulariza-
tion can only be characterized with difficulty. The situation
tends to be reversed in the case of parameter-driven regu-
larization: Here, it is straightforward – by choosing larger
and larger parameter values – to control the mathematical
influence of the regularization. However, an interpretation
of the regularization in the context of the content-related
question is less direct than in the first case. Nevertheless,
a possible interpretation in a decision-theoretic context is
given in Jansen et al. [2018] by establishing a connection
to Luce’s just noticeable differences [Luce, 1956]. In this
paper, we focus on parameter-driven regularization since,
for regularization of the test statistic used later, the con-
crete interpretation of the parameter is only of secondary
importance.

4 GENERALIZED DOMINANCE

As indicated at the outset, we now turn to a stochastic or-
der between random variables with values in a preference
system. This order rigorously generalizes stochastic domi-
nance in the sense that it optimally exploits also the partial
cardinal information encoded in these spaces. Therefore, it
is neither limited to a purely ordinal analysis as first-order
stochastic dominance nor requires perfect cardinal informa-
tion as second-order stochastic dominance. Consequently,
in cases without any cardinal information, i.e., where R2 is
the trivial pre-order, the considered order reduces back to
the first-order stochastic dominance.

We start by introducing some additional notation: For π a
probability measure on (Ω,S1) and A a consistent prefer-
ence system, we define by F(A,π) the set{

X ∈ AΩ : u ◦X ∈ L1(Ω,S1, π) ∀u ∈ UA

}
.

We then can define the following pre-order on F(A,π).

Definition 4 Let A = [A,R1, R2] be consistent. For
X,Y ∈ F(A,π), we say Y is (A, π)-dominated by X if

Eπ(u ◦X) ≥ Eπ(u ◦ Y )

for all u ∈ UA. The induced relation is denoted by R(A,π)

and called generalized stochastic dominance (GSD).

We have the following immediate simplification if the un-
derlying preference system A is additionally bounded.

Observation 2 If A is consistent and bounded with a∗, a
∗

as before, then (X,Y ) ∈ R(A,π) iff

∀u ∈ NA : Eπ(u ◦X) ≥ Eπ(u ◦ Y ). (2)



5 TESTING FOR DOMINANCE

Throughout this section, let A = [A,R1, R2] be consistent
and bounded with a∗, a

∗ ∈ A as in Definition 1.

We now turn to the statistical version of our investigation,
where we do not know the underlying probability π but i.i.d.
samples X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) of X
and Y are available. The fundamental question now is when
we can, with a certain error probability, conclude from this
information that X,Y ∈ F(A,π) are in relation with respect
to the GSD-relation R(A,π). Constructing a corresponding
test, we first need to be clear about appropriate statistical
hypotheses. Ideally, we would be interested in the following
pair of hypotheses:

Hid
0 : (X,Y ) /∈ R(A,π) vs. Hid

1 : (X,Y ) ∈ R(A,π) (3)

In the pair (Hid
0 , Hid

1 ) of hypotheses – as intended in a
statistical test – the question actually of interest would be
formulated as the alternative hypothesis. Then, the proba-
bility of falsely assuming it to be true could be controlled
by the significance level. Unfortunately, similar to the sit-
uation of classical stochastic dominance as described, e.g.,
in Barrett and Donald [2003], or generally in the context
of bio-equivalence testing (e.g., Brown et al. [1997]), the
hypothesis Hid

0 seems to be too broad for a meaningful anal-
ysis, in the sense that the most conservative scenario under
Hid

0 is not clearly specifiable.3 For this reason, we choose
a pair of alternatives that deviates slightly from the actual
question of interest and afterwards try to make the deviation
from the actual pair of hypotheses of interest assessable by
testing with the variables in reversed roles. The modified
pair of hypotheses looks as follows:

H0 : (Y,X) ∈ R(A,π) vs. H1 : (Y,X) /∈ R(A,π) (4)

The advantage of the pair (H0, H1) is that a worst-case anal-
ysis of the distribution of a suitable test statistic under H0 is
possible: The test statistic would have to be analyzed under
the most conservative case within H0, namely πX = πY ,
with πX and πY the image measures of X and Y under π.
The drawback to the pair (H0, H1) is that in the case of re-
jection of H0 we can only control the erroneous conclusion
on (Y,X) /∈ R(A,π) (and not the one actually of interest on
(X,Y ) ∈ R(A,π)) in its probability by the significance level.
To mitigate this effect, we can test with the pair (H0, H1)
of hypotheses additionally with X and Y in reversed roles.

5.1 THE CHOICE OF THE TEST STATISTIC

For defining an adequate test statistic, we first note that –
due to the boundedness of A and Observation 2 – it holds

3The problem is due to the fact that the relation R(A,π) is a
partial order. Compare also [Schollmeyer et al., 2017, p. 24-25].

(X,Y ) ∈ R(A,π) if and only if

D(X,Y ) := inf
u∈NA

(Eπ(u ◦X)− Eπ(u ◦ Y )) ≥ 0, (5)

i.e., if the infimal expectation difference with respect to the
available information is at least zero. Thus, a straightforward
test statistic is the empirical version of D(X,Y ), i.e.,

dX,Y : Ω → R

ω 7→ inf
u∈NAω

∑
z∈(XY)ω

u(z) · (π̂ω
X({z})− π̂ω

Y ({z}))

with, for ω ∈ Ω fixed, π̂ω
X and π̂ω

Y the observed empirical
image measures of X and Y ,

(XY)ω = {Xi(ω) : i ≤ n} ∪ {Yi(ω) : i ≤ n} ∪ {a∗, a∗},

and Aω the subsystem of A restricted to (XY)ω. If
dX,Y(ω0) ≥ 0 holds for some ω0 ∈ Ω, we say there is
in-sample GSD of X over Y in the sample induced by ω0.

As a further test statistic, we consider a regularized version
of dX,Y: The infimum in the definition of dX,Y is now only
computed among [0, 1]-normalized representations of Aω

that distinguish between strictly related alternatives over
some pre-specified threshold value. In this way, the regular-
ized test statistic is also sensitive for distinguishing situa-
tions under dominance regarding their extent of dominance.4

Formally, the regularized test statistic looks as follows:

dεX,Y : Ω → R

ω 7→ inf
u∈N δε(ω)

Aω

∑
z∈(XY)ω

u(z) · (π̂ω
X({z})− π̂ω

Y ({z}))

with ε ∈ [0, 1] and δε(ω) := ε · sup{ξ : N ξ
Aω

̸= ∅}.
Observe that dX,Y = d0X,Y, i.e., the unregularized test
statistic equals the regularized one if ε = 0.

5.2 A PERMUTATION-BASED TEST

As the distribution of dX,Y and dεX,Y can not be straight-
forwardly analyzed, we utilize that under the above i.i.d.-
assumption a permutation-based test (see, e.g., Pratt and
Gibbons [2012]) can be performed. For this, we assume we
made observations of the i.i.d. variables, i.e., we observed

x := (x1, . . . , xn) := (X1(ω0), . . . , Xn(ω0)) (6)
y := (y1, . . . , ym) := (Y1(ω0), . . . , Ym(ω0)) (7)

for some ω0 ∈ Ω. The resampling scheme for analyzing the
distributions of dX,Y and dεX,Y, respectively, can then be
described by the following steps:

4While in-sample GSD (essentially) implies dX,Y(ω0) = 0, it
often holds dεX,Y(ω0) > 0. Thus, for V,W with (VW)ω0 =
(XY)ω0 it might be that dV,W(ω0) = 0 and dεX,Y(ω0) >
dεV,W(ω0) > 0 and, hence, that under regularization X (em-
pirically) dominates Y more strongly than V dominates W .



Step 1: Take the pooled data sample:

w := (w1, . . . , wn+m) := (x1, . . . , xn, y1, . . . , ym)

Step 2: Take all I ⊆ {1, . . . , n + m} of size n. Evalu-
ate dX,Y resp. dεX,Y for (wi)i∈I and (wi)i∈{1,...,n+m}\I
instead of x and y. Denote the evaluations by dI resp. dεI .

Step 3: Sort all dI resp. dεI in increasing order.

Step 4: Reject H0 if dX,Y(ω0) resp. dεX,Y(ω0) is greater
than the ⌈(1 − α) ·

(
n+m
n

)
⌉-th value of the increasingly

ordered values dI resp. dεI , where α is the significance level.

For large
(
n+m
n

)
, approximate the above by computing dI

resp. dεI only for a large number N of randomly drawn I .

5.3 COMPUTATION OF dX,Y AND dε
X,Y

We show how the test statistics dX,Y and dεX,Y can be
computed in concrete cases. For that, we consider samples
x and y of the form (6) and (7), and we assume w.l.o.g. that

(XY)ω0
= {z1 = a∗, z2 = a∗, z3, . . . , zs}

Further, we denote by C(x,y) the set of all vectors
(v1, . . . , vs, ξ) ∈ [0, 1]s+1 such that v1 = 0 and v2 = 1
and for which it holds that

• vi = vj if (zi, zj) ∈ IR1 ,

• vi − vj ≥ ξ if (zi, zj) ∈ PR1
,

• vk − vl = vr − vt if ((zk, zl), (zr, zt)) ∈ IR2
and

• vk − vl − vr + vt ≥ ξ if ((zk, zl), (zr, zt)) ∈ PR2 .

Moreover, for ξ0 ∈ [0, 1] fixed, we define Cξ0(x,y) as
{(v1, . . . , vs) ∈ [0, 1]s : (v1, . . . , vs, ξ0) ∈ C(x,y)}, i.e.,
the set of all sample weights that respect the observed pref-
erence system and distinguish the strict part of its relations
above a threshold of ξ0. Both C(x,y) and Cξ0(x,y) are de-
scribed by finitely many linear inequalities on (v1, . . . , vs, ξ)
resp. (v1, . . . , vs). This allows to formulate Propositions 1
and 2. The first one demonstrates how to compute the maxi-
mum regularization threshold, whereas the second one cap-
tures the computation of dX,Y and dεX,Y.

Proposition 1 For samples x and y of the form (6) and (7)
and ε ∈ [0, 1], we consider the linear program (LP)

ξ −→ max
(v1,...,vs,ξ)

(8)

with constraints (v1, . . . , vs, ξ) ∈ C(x,y). Denote by ξ∗ its
optimal value. It then holds δε(ω0) = ε · ξ∗.

Proposition 2 For samples x and y of the form (6) and (7)
and ε ∈ [0, 1], we consider the following LP

s∑
ℓ=1

vℓ ·
(

|{i:xi=zℓ}|
n − |{i:yi=zℓ}|

m

)
−→ min

(v1,...,vs)
(9)

with (v1, . . . , vs) ∈ Cεξ∗(x,y), where ξ∗ is the optimal
value of (8). Denote by optε(x,y) its optimal value. Then:

i) optε(x,y) = dεX,Y(ω0).

ii) It holds in-sample GSD of X over Y iff opt0(x,y) ≥ 0.

6 ROBUSTIFIED TESTING USING IP

Our test for GSD relies on i.i.d. samples of the popula-
tions of actual interest. It thus can be based directly on
the observed empirical distributions. We now show how
imprecise probabilities (IP) and credal sets (e.g., Walley
[1991], Augustin et al. [2014a]) can be used to robustify our
test towards deviations of its assumptions. Indeed, there are
various reasons why the i.i.d. assumption can be violated,
ranging from unobserved heterogeneity to dependencies
arising from data collection. The latter reason is particu-
larly prevalent in surveys, where the mode (e.g., phone,
web, in-person) often results in unequal, and even outcome-
dependent, chances of the units to be sampled. Although
methods exist to tackle this problem, such as reweighting
schemes or random routing, most of them come with flaws
of their own kind. For example, Bauer [2014, 2016] shows
that random routing may be substantially biased, leading to
informatively distorted selection probabilities, hence non
i.i.d. data.

6.1 THE ROBUSTIFIED TESTING FRAMEWORK

The rough idea of our robustification is to not analyze the
test statistic based on π̂X and π̂Y alone, but use neighbour-
hood models or, more generally, credal sets MX ∋ π̂X

and MY ∋ π̂Y of candidate probability measures instead.
Credal sets – introduced in Levi [1974] – model partial
probabilistic information by the set of all non-contradictory
probabilities and have gained popularity in machine learning
(e.g., Corani and Zaffalon [2008], Lienen and Hüllermeier
[2021], Shaker and Hüllermeier [2021], see also the corre-
sponding literature referenced as related work in Section 1.

The concrete idea behind our robustification is that we allow
our samples (potentially) not to come from the populations
of actual interest, but instead from some biased populations.
We assume that these biased populations are similar to the
true ones in the sense that they are contained in the credal
sets MX and MY , respectively. We start by only assuming
both MX and MY to be convex polyhedra with extreme
points collected in the finite sets E(MX) and E(MY ). Most
naturally, the test statistics dX,Y and dεX,Y can then be
replaced by their lower envelopes dX,Y : Ω → R and
dεX,Y : Ω → R, respectively, given by

ω 7→ inf
(π1,π2,u)∈D

∑
z∈(XY)ω

u(z) · (π1({z})− π2({z}))

ω 7→ inf
(π1,π2,u)∈Dε

∑
z∈(XY)ω

u(z) · (π1({z})− π2({z}))



with D = Mω
X×Mω

Y ×NAω
, Dε = Mω

X×Mω
Y ×N δε(ω)

Aω

and Mω
X resp. Mω

Y the empirical credal sets given ω ∈ Ω.

Now, dX,Y (or dεX,Y) can be used to test the same H0

as before, however, under the additional difficulty that the
samples are drawn from a biased population of which we
only know it is contained in some neighborhood around
the true population. To appropriately adapt the resampling
scheme, one must perform the test under all laws within
the corresponding credal sets. Since this is computationally
cumbersome, we instead compare the obtained lower enve-
lope dX,Y (or dεX,Y) with the distribution (in the resamples)
of the corresponding upper envelope, dX,Y (or d

ε

X,Y) that is
obtained by replacing the part of inf concerning Mω

X×Mω
Y

with the respective sup in the above definitions. This gives
a conservative yet valid statistical test.5

6.2 COMPUTATION OF dX,Y AND dε
X,Y

We now give an algorithm for the robustified test statistics.

Proposition 3 For x and y of form (6) and (7), ε ∈ [0, 1],
and (π1, π2) ∈ E(Mω0

X )× E(Mω0

Y ), consider the LP

s∑
ℓ=1

vℓ · (π1({z})− π2({z})) −→ min
(v1,...,vs)

(10)

with (v1, . . . , vs) ∈ Cεξ∗(x,y) and ξ∗ the optimum of (8).
Call optε(x,y, π1, π2) its optimum and opt

ε
(x,y) the min-

imal optimum over (π1, π2) ∈ E(Mω0

X )× E(Mω0

Y ). Then:

i) opt
ε
(x,y) = dεX,Y(ω0).

ii) There is in-sample GSD of X over Y for any π with
π̂ω0

X ∈ Mω0

X and π̂ω0

Y ∈ Mω0

Y if opt
0
(x,y) ≥ 0.

Proposition 3 requires to solve |E(Mω0

X )| · |E(Mω0

Y )| lin-
ear programs. Depending on the concrete neighbourhood
models, this is obviously limited: The number of programs
is simply too large. A common strategy in such a case is
to additionally assume 2-monotonicity of the considered
credal sets, since this allows us – at least for R1 complete
– to give closed formulas for the upper and lower expecta-
tions. Unfortunately, this is not so simple in the case of a
partially ordered R1: since the representation via the Cho-
quet integral (e.g., Denneberg [1994]) depends on the order
of elements of A, an optimum over all linear extensions
of R1 is needed to determine the most extreme Choquet
integrals. In the worst case, this would lead to optimizing a
non-convex function and thus hardly simplify the original
problem (see Timonin [2012]).

Another strategy is restricting to credal sets with moderately
many extreme points. We now consider one such possibility,

5Actually, we must assume the true empirical laws to lie in a
neighborhood of the biased empirical laws almost surely (or with
arbitrarily high probability) to get an approximate test.

namely the the γ- contamination model (or linear-vacuous
model, see, e.g., [Walley, 1991, p. 147]). Here, we assume
that for ω ∈ Ω, γ ∈ [0, 1], and Z ∈ {X,Y } fixed, we have

Mω
Z =

{
π : π ≥ (1− γ) · π̂ω

Z

}
, (11)

where ≥ is understood event-wise. For γ-contamination
models there are exactly as many extreme points as there
are observed distinct data points, concretely given by

E(Mω
Z) =

{
γδz + (1− γ)π̂ω

Z : ∃j s.t. Zj(ω) = z
}
, (12)

where δz denotes the Dirac-measure in z (see again Walley
[1991, p. 147]). Proposition 4 states that if the credal sets
are both γ-contamination models, then a least favorable pair
of extreme points can a priori be specified. The test statistics
thus can be computed by solving one linear program.

Proposition 4 Consider again the situation of Proposi-
tion 3, where additionally Mω0

X and Mω0

Y are of the
form (11) with extreme points as in (12). It then holds:

opt
ε
(x,y) = optε(x,y, π∗, π

∗),where

π∗ = γδa∗ + (1− γ)π̂ω0

X and π∗ = γδa∗ + (1− γ)π̂ω0

Y .

7 MULTIDIMENSIONAL SPACES WITH
DIFFERENTLY SCALED DIMENSIONS

We now turn to a special case that is very common in ap-
plied research: multidimensional spaces whose dimensions
may be of different scale of measurement.6 While tradi-
tional empirical research and policy support (e.g., Euro-
pean Commission [2023]) summarizes such situations by
indices/indicators that suffer eo ipso from “the subjectivity
of choices associated with them” ([UNECE, 2019, p. 11]),
the embedding into the framework considered here allows a
faithful representation of the entire underlying information.

Concretely, we address r ∈ N dimensional spaces for which
we assume – w.l.o.g. – that the first 0 ≤ z ≤ r dimensions
are of cardinal scale (implying that differences of elements
may be interpreted as such), while the remaining ones are
purely ordinal (implying differences to be meaningless apart
from the sign). Specifically, we consider (bounded subsys-
tems of) the preference system7

pref(Rr) = [Rr, R∗
1, R

∗
2] (13)

where

R∗
1 =

{
(x, y) : xj ≥ yj ∀j ≤ r

}
, and

R∗
2 =

{
((x, y), (x′, y′)) :

xj − yj ≥ x′
j − y′j ∀j ≤ z

xj ≥ x′
j ≥ y′j ≥ yj ∀j > z

}
.

6For recent applications of such special preference systems to
classifier comparison or multi-target decision making see Jansen
et al. [2022a] and Jansen et al. [2022b].

7One easily verifies that R∗
1 and R∗

2 are pre-orders.



While R∗
1 can be interpreted as a simple component-wise

dominance relation, R∗
2 deserves some more explanation:

One pair of consequences is preferred to another one if
it is ensured in the ordinal dimensions that the exchange
associated with the first pair is not a deterioration to the
exchange associated with the second pair and, in addition,
there is component-wise dominance of the differences of the
cardinal dimensions. The following proposition lists some
important results for a more precise characterization of the
GSD-relation on multidimensional structures.

Proposition 5 Let π be a probability measure on (Ω,S1),
and X = (∆1, . . . ,∆r), Y = (Λ1, . . . ,Λr) ∈ F(pref(Rr),π).
Then, the following holds:

i) pref(Rr) is consistent.

ii) If z = 0, then R(pref(Rr),π) equals (first-order) stochas-
tic dominance w.r.t. π and R∗

1 (short: FSD(R∗
1, π)).

iii) If (X,Y ) ∈ R(pref(Rr),π) and ∆j ,Λj ∈ L1(Ω,S1, π)
for all j = 1, . . . , r, then

I. Eπ(∆j) ≥ Eπ(Λj) for all j = 1, . . . , r, and
II. (∆j ,Λj) ∈FSD(≥, π) for all j = z + 1, . . . , r.

Additionally, if all components of X are jointly indepen-
dent and all components of Y are jointly independent,
properties I. and II. imply (X,Y ) ∈ R(pref(Rr),π).

Part iii) of Proposition 5 is complete in the sense that the
addition actually holds only under stochastic independence.

Remark 1 The addition to iii) does not generally hold. A
counterexample is z = 1, r = 2, Ω = {ω1, . . . , ω4}, and
π the uniform distribution over Ω. Then, for ∆1(ω) =
1, 1, 2, 2, ∆2(ω) = 1, 1, 2, 2, Λ1(ω) = 1, 1, 2, 2, and
Λ2(ω) = 1, 2, 1, 2 for ω = ω1, . . . , ω4, it holds that
Eπ(∆1) = Eπ(Λ1). In fact, the first components are equiv-
alent with respect to first order stochastic dominance. The
same holds for the second components. However, the whole
vectors are incomparable with respect to first order stochas-
tic dominance, since there is no corresponding mass trans-
port from higher values to lower (or equal) values possible.
Additionally, for u(x, y) := x ·y, we have that u ∈ Upref(Rr),
Eπ(u ◦ ∆) = 10/4, whereas Eπ(u ◦ Λ) = 9/4. Thus, ∆
and Λ can not be equivalent with respect to GSD.

As an immediate consequence of Proposition 5, we have the
following corollary for bounded subsystems of pref(Rr).

Corollary 1 If C = [C,Rc
1, R

c
2] is a bounded subsystem of

pref(Rr) and X,Y ∈ F(C,π), then C is 0-consistent and
ii) and iii) from Prop. 5 hold, if we replace R(pref(Rr),π)

by R(C,π), FSD(R∗
1, π) by FSD(Rc

1, π), and (X,Y ) ∈
R(pref(Rr),π) by ∀u ∈ NC : Eπ(u ◦X) ≥ Eπ(u ◦ Y ).

Finally, we give a characterization of the set of all represen-
tations of pref(Rr) if only one dimension is cardinal.

Proposition 6 Let z = 1 and denote by Usep the set of
all u : Rr → R such that, for (x2, . . . , xr) ∈ Rr−1

fixed, the function u(·, x2, . . . , xr) is strictly increasing and
(affine) linear and such that, for x1 ∈ R fixed, the function
u(x1, ·, . . . , ·) is strictly isotone w.r.t. the the componentwise
partial order on Rr−1. Then Usep = Upref(Rr).

8 APPLICATIONS

We now apply our framework on three examples: derma-
tological symptoms, credit approval data, and multidimen-
sional poverty measurement. Results from the former two
applications are presented in Supp. D, while Section 8.2
discusses results from poverty analysis. Before that, some
details on the concrete implementation are given.

8.1 IMPLEMENTATION

To compute the test statistics for sample size s, we use a
LP with constraints given by C(x, y) (Section 5.3). The
computation of the test statistics and the maximum regular-
ization strength ξ∗, see Proposition 2 and 1, are LPs based
on this same constraint matrix. The robustified statistics
under γ-contamination are shifted versions of the original
ones (see Supp. C). Although one only needs to compute
the constraint matrix once, the worst-case complexity of the
computation is O(s4). In the implementation, we focused
on the case of two ordinal variables and only one numer-
ical variable, using the preference system (13). Note that
a small number of ordinal variables with a small number
of categories, compared to the sample size s, already leads
to many incomparable observations. This can be used to
reduce the computation time of the constraint matrix. For
further details on the implementation, see Supp. B.

8.2 EXAMPLE: POVERTY ANALYSIS

At least since the capability approach by Sen [1985], there is
mostly consensus that poverty has more facets than income
or wealth. It is perceived as multidimensional concept, in-
volving variables that are often ordinally scaled, e.g., level of
education. One common task in poverty analysis is to com-
pare subgroups like men and women. Stochastic dominance
is a popular way of comparing such subpopulations, see e.g.
Garcia-Gomez et al. [2019]. Excitingly, our approach allows
us to extend this to multidimensional poverty measurement
with any kind (of scales) of dimensions.

In the following, we will use data from the German General
Social Survey (ALLBUS) GESIS [2018] that accounts for
three dimensions of poverty: income (numeric), health (or-
dinal, 6 levels) and education (ordinal, 8 levels), see also
Breyer and Danner [2015]. We are using the 2014 edition
and focus on a subsample with n = m = 100 men and
women each. We are interested in the hypothesis that women
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Figure 2: Distributions of dεI with ε ∈ {0, 0.25, 0.5, 0.75, 1}
obtained from N = 1000 resamples of ALLBUS data.
Black stripes show exact positions of dεI values. Vertical
black line marks median. Red line shows value of the re-
spective observed test statistics dεX,Y(ω).

are dominated by men with respect to GSD – differently put,
that women are poorer than men regarding any compatible
utility representation of income, health and education.

As discussed in Section 5, we test the hypotheses (4), where
X resp. Y correspond to the subpopulation of men resp.
women. We deploy our test with varying regularization
strength ε. Figure 2 displays the distribution of the test
statistics obtained trough N = 1000 resamples (cf. Section
5.3). It becomes evident that our proposed regularization
serves its purpose: As ε increases, the distribution of tests
statistics becomes both more centered and closer to zero.
Moreover, we reject for higher shares of the test statistics,
see the position of dεX,Y(ω) (red line) compared to dεI (black
stripes). For ε ∈ {0.5, 0.75, 1} we reject for the common
significance level of α ≈ 0.05.

As touched upon in Section 8.1, the robustified versions of
the test statistic under the linear-vacuous model are shifted
versions of the regular test statistics, i.e., they do not have
to be computed explicitly. Exploiting this fact, we visualize
the share of regularized test statistics for which we do not
reject the null hypothesis (black stripes right of red line
in Figure 2), depending on the contamination parameter γ
of the underlying linear-vacuous model, see Figure 3 (and
Supp. C for details on computing the shares). It should be
mentioned that these shares correspond to p-values telling
at which significance levels α the test would be marginally
rejected. Generally, it becomes apparent that even for small
values of γ the test statistics can be severely corrupted. If we
allow more than 1% (γ > 0.01) of the data (2 observations)
to be redistributed in any manner, the shares of rejections
drop drastically. Therefore, ignoring an (even very tiny)
contamination γ of the underlying distributions leads to a
seriously inflated type I error. Remarkably, our regulariza-
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Figure 3: P-values as function of the contamination γ (see
Supp. C) for tests with different regularization strength ε.
Dotted red line marks significance level α = 0.05.

tion hedges against this to some extent: Given a significance
level α = 0.05, the fully regularized version (i.e., ε = 1) of
our robustified test (cf., Section 6) comes to the same deci-
sion for γ up to 0.075. As explained in Section 5, rejecting
H0 does not necessarily mean that women are dominated by
men; they could also be incomparable. However, our tests
with reversed variables give no evidence of incomparability:
all their observed p-values are above 0.95.

9 CONCLUDING REMARKS

Summary: We have further explored a generalized stochas-
tic dominance (GSD) order among random variables with
locally varying scale of measurement. We focused on four
aspects: First, the investigation of (regularized) statistical
tests for GSD when only samples of the variables are avail-
able. Second, robustifications of these tests w.r.t. their under-
lying assumptions using ideas from imprecise probabilities.
Third, a detailed investigation of our ordering for prefer-
ence systems arising from multidimensional structures with
differently scaled dimensions. Finally, applications to exam-
ples from poverty measurement, finance, and medicine.

Limitations and future research: Two particular limita-
tions offer promising opportunities for future research.

Extending robust testing to belief function: In Section 6, we
have focused – for computational complexity – to linear-
vacuous models. However, the idea of identifying least favor-
able extreme points seems to generalize to any credals sets
induced by belief functions in the sense of Shafer [1976].

Improving computational complexity: The LPs for check-
ing in-sample GSD become computer intensive for larger
amounts of data. Although complexity reduces for the spe-
cial case of preference systems discussed in Section 7
(cf. Section 8.1), Proposition 6 suggests that a further drastic
reduction can be expected for only one cardinal dimension.
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In the following, we give supplementary information and material to the main paper. This includes all mathematical
proofs of the propositions, corollaries, and observations established in the main paper (Part A), further details on the
implementation and reproducibility (Part B), further calculations for the robustified test statistics (Part C), and further
analyses of the applications in the main paper (Part D). If not explicitly stated otherwise, from now on, all references to
equations, propositions, etc. refer to the main part of the paper.

A PROOFS OF THE RESULTS IN THE MAIN PAPER

A.1 PROOFS FOR OBSERVATIONS 1 AND 2: BOUNDED PREFERENCE SYSTEMS

We start by proving Observations 1 resp. 2 from Sections 2 resp. 4 that state that checking consistency resp. GSD simplifies
if the underlying preference system is bounded.

Observation 1 Let A = [A,R1, R2] be a bounded preference system. Then A is consistent iff it is 0-consistent.

Proof. If A is 0-consistent, then it is obviously also consistent, since every normalized representation is in particular a
representation. For the other direction, assume A to be consistent. Choose u ∈ UA arbitrarily and denote by a∗, a∗ the
R1-minimal resp. R1-maximal elements satisfying (a∗, a∗) ∈ PR1

. From the latter we know that u(a∗) > u(a∗). Thus, the
function

ũ : A→ [0, 1] , a 7→ u(a)− u(a∗)

u(a∗)− u(a∗)

is well-defined. Moreover, one easily verifies that ũ ∈ UA, and u(a∗) = 0, and u(a∗) = 1. Thus, we can conclude that
ũ ∈ NA, which – by definition – implies 0-consistency. □

Observation 2 If A is consistent and bounded with a∗, a∗ as before, then (X,Y ) ∈ R(A,π) iff

∀u ∈ NA : Eπ(u ◦X) ≥ Eπ(u ◦ Y ).

Proof. The direction ⇒ follows trivially by observing NA ⊆ UA. For the direction ⇐, assume that it holds ∀u ∈ NA :
Eπ(u ◦ X) ≥ Eπ(u ◦ Y ). Choose u ∈ UA arbitrarily. With the same argument as given in the proof of Observation 1,
we know that then ũ ∈ NA, where ũ is defined as in the proof of Observation 1. Since ũ is a positive (affine) linear
transformation of u, we know that Eπ(u ◦X) ≥ Eπ(u ◦ Y ) if and only if Eπ(ũ ◦X) ≥ Eπ(ũ ◦ Y ). Since the latter is true
by assumption (utilizing ũ ∈ NA), the first also is true. As u was chosen arbitrarily, this completes the proof. □

A.2 PROOFS OF PROPOSITIONS 1 AND 2: COMPUTATIONS FOR THE PERMUTATION TEST

We now give proofs for Propositions 1 resp. 2 from Section 5.3 that concern the computation of the maximum regularization
strength resp. the computation of the (regularized) test statistic for the permutation-test.
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Proposition 1 For samples x and y of the form (6) and (7) and ε ∈ [0, 1], we consider the linear program

ξ −→ max
(v1,...,vs,ξ)

with constraints (v1, . . . , vs, ξ) ∈ C(x,y). Denote by ξ∗ its optimal value. It then holds δε(ω0) = ε · ξ∗.

Proof. The Proposition follows from standard results on linear optimization and the fact that C(x,y) is compact. Set
I :=

{
ℓ : (zℓ, a

∗) ∈ IR1

}
and define the vector v := (0, 1, v3, . . . , vs, 0) ∈ [0, 1]s+1 by vℓ = 1 if ℓ ∈ I and vℓ = 0

otherwise. One then easily verifies that v is an admissible solution to the above linear program. Since C(x,y) is compact,
this implies the existence of an optimal solution. Denote thus by v∗ := (0, 1, v∗3 , . . . , v

∗
s , ξ

∗) an arbitrary optimal solution.
We have to show that

ξ∗ = sup
{
ξ : N ξ

Aω0
̸= ∅
}
=: c.

Assume, for contradiction, the above equality does not hold. We distinguish two cases:

Case 1: ξ∗ < c. Then, one easily verifies that for any function u ∈ N c
Aω0

the vector (u(z1), . . . , u(zs), c) defines an
admissible solution to the above linear program with an objective value of c. This constradicts the optimality of v∗.

Case 2: ξ∗ > c. Then, setting u : (XY)ω0
→ [0, 1] with u(zℓ) := v∗ℓ defines an element of N ξ∗

Aω0
, contradicting that c is

the largest number for which Aω0
is c-consistent.

Thus, we have that c = ξ∗, implying δε(ω0) = ε · ξ∗. □

Proposition 2 For samples x and y of the form (6) and (7) and ε ∈ [0, 1], we consider the following linear program
s∑

ℓ=1

vℓ ·
(

|{i:xi=zℓ}|
n − |{i:yi=zℓ}|

m

)
−→ min

(v1,...,vs)

with constraints (v1, . . . , vs) ∈ Cεξ∗(x,y), where ξ∗ denotes the optimal value of (8). Denote by optε(x,y) its optimal
value. It then holds:

i) optε(x,y) = dεX,Y(ω0).

ii) There is in-sample GSD of X over Y if and only if opt0(x,y) ≥ 0.

Proof. i) By definition and Proposition 2 , we know that N ξ∗

Aω0
̸= ∅. As these sets are nested with decreasing ξ-value and we

have εξ∗ ≤ ξ∗, this implies that also N εξ∗

Aω0
̸= ∅. Hence, we can choose u ∈ N εξ∗

Aω0
. One then easily verifies that the vector

(u(z1), . . . , u(zs)) defines an admissible solution to the above linear program. Since Cεξ∗(x,y) is compact, this implies the
existence of an optimal solution. Thus, denote by v∗ := (v∗1 , . . . , v

∗
s ) an arbitrary such optimal solution. If we then define

u : (XY)ω0 → [0, 1] with u(zℓ) := v∗ℓ , then one easily verifies that u ∈ N εξ∗

Aω0
and that

optε(x,y) =
∑

z∈(XY)ω0

u(z) · (π̂ω0

X ({z})− π̂ω0

Y ({z})) (1)

(to see this, note that the right side of the equation is a simple reformulation of the objective function with v∗ plugged-in).

We have to show that
optε(x,y) = dεX,Y(ω0).

Assume, for contradiction, the above equality does not hold. We distinguish two cases:

Case 1: optε(x,y) > dεX,Y(ω0). This would imply that there exists an u′ ∈ N εξ∗

Aω0
that – if it was set in the right-hand

side of the above Equation (1) (in the supplementary material) instead of u – would produce a value strictly smaller than
optε(x,y). This contradicts the optimality of v∗, since every u′ ∈ N εξ∗

Aω0
produces an admissible solution to the linear

program with objective value given by the right-hand side of the above Equation (1).

Case 2: optε(x,y) < dεX,Y(ω0). This would be an immediate contradiction to the above Equation (1) (in the supplementary
material), since dεX,Y(ω0) is by definition the infimum over all the expressions on the equation’s right-hand side.

This completes the proof of i). To see ii), note that i) implies opt0(x,y) = d0X,Y(ω0). Thus, we have opt0(x,y) ≥ 0 if and
only if d0X,Y(ω0) ≥ 0, which – by definition – is true if and only if there is in-sample GSD of X over Y . □



A.3 PROOFS OF PROPOSITION 3 AND 4: COMPUTATIONS FOR ROBUSTIFIED TESTING

We now give proofs of Proposition 3 resp. 4 from Section 6 concerning the computation of the robustified test statistic resp.
its simplification under the special case of a γ-contamination model (with γ ∈ [0, 1]).

Proposition 3 For samples x and y of the form (6) and (7), ε ∈ [0, 1], and (π1, π2) ∈ E(Mω0

X )× E(Mω0

Y ), we consider
the following linear program:

s∑
ℓ=1

vℓ · (π1({z})− π2({z})) −→ min
(v1,...,vs)

with constraints (v1, . . . , vs) ∈ Cεξ∗(x,y), where ξ∗ denotes the optimal value of (8). Denote by optε(x,y, π1, π2) its
optimal value and by opt

ε
(x,y) the minimal optimum over all combinations of (π1, π2) ∈ E(Mω0

X ) × E(Mω0

Y ). It then
holds:

i) opt
ε
(x,y) = dεX,Y(ω0).

ii) There is in-sample GSD of X over Y for any π with π̂ω0

X ∈ Mω0

X and π̂ω0

Y ∈ Mω0

Y if opt
0
(x,y) ≥ 0.

Proof. i) Since nothing in the proof of Proposition 2 hinges on the concrete structure of the involved empirical image
measures, Proposition 2 is still valid if we replace π̂ω0

X and π̂ω0

Y by arbitrary π1 ∈ Mω0

X and π2 ∈ Mω0

Y , respectively. This
specifically implies

optε(x,y, π1, π2) = inf
u∈N δε(ω0)

Aω0

∑
z∈(XY)ω0

u(z) · (π1({z})− π2({z})). (2)

In order to show i), we now need to verify that

inf
(π1,π2)∈E(Mω0

X )×E(Mω0
Y )

optε(x,y, π1, π2) = dεX,Y(ω0).

Due to the above Equation (2) (in the supplementary material) and the fact that iterated infima can be equivalently replaced
by one global infimum, we know that

inf
(π1,π2)∈Mω0

X ×Mω0
Y

optε(x,y, π1, π2) = dεX,Y(ω0). (3)

We then can compute:

dεX,Y(ω0)
(3)
= inf

(π1,π2)∈Mω0
X ×Mω0

Y

optε(x,y, π1, π2)

= inf
(π1,π2)∈Mω0

X ×Mω0
Y

inf
u∈N δε(ω)

Aω

∑
z∈(XY)ω0

u(z) · (π1({z})− π2({z}))

= inf
u∈N δε(ω)

Aω

inf
(π1,π2)∈Mω0

X ×Mω0
Y

∑
z∈(XY)ω0

u(z) · (π1({z})− π2({z}))

(⋆)
= inf

u∈N δε(ω)
Aω

(
inf

π1∈Mω0
X

∑
z∈(XY)ω0

u(z) · π1({z})− sup
π2∈Mω0

Y

∑
z∈(XY)ω0

u(z) · π2({z})

)

(⋆⋆)
= inf

u∈N δε(ω)
Aω

(
inf

π1∈E(Mω0
X )

∑
z∈(XY)ω0

u(z) · π1({z})− sup
π2∈E(Mω0

Y )

∑
z∈(XY)ω0

u(z) · π2({z})

)

= inf
(π1,π2)∈E(Mω0

X )×E(Mω0
Y )

inf
u∈N δε(ω)

Aω

∑
z∈(XY)ω0

u(z) · (π1({z})− π2({z}))

= inf
(π1,π2)∈E(Mω0

X )×E(Mω0
Y )

optε(x,y, π1, π2)



Here, (⋆) follows since – for u fixed – the infimum of the differences of the two sums is attained if the first sum is smallest
possible and the second sum is largest possible (note that all sums involved are finite). Further, (⋆⋆) follows since – again for
u fixed – the sums are linear functions on the compact sets Mω0

X resp. Mω0

Y and, therefore, attain their optima on E(Mω0

X )
resp. E(Mω0

Y ). The fith and sixth equalities are just reversing the computation done in the first three equalities.

To see ii), note that i) implies opt
0
(x,y) = d0X,Y(ω0). Thus, opt

0
(x,y) ≥ 0 if and only if d0X,Y(ω0) ≥ 0. But – by

definition – the latter is true if and only if

inf
u∈N 0

Aω0

∑
z∈(XY)ω0

u(z) · (π1({z})− π2({z})) ≥ 0

for all (π1, π2) ∈ Mω0

X × Mω0

Y . This obviously implies in-sample GSD of X over Y for any π with π̂ω0

X ∈ Mω0

X and
π̂ω0

Y ∈ Mω0

Y , since N 0
Aω0

= NAω0
. □

Proposition 4 Consider again the situation of Proposition 3 with the additional assumption that Mω0

X and Mω0

Y are of the
form (11) with extreme points as in (12). It then holds:

opt
ε
(x,y) = optε(x,y, π∗, π

∗)

where
π∗ = γδa∗ + (1− γ)π̂ω0

X

and
π∗ = γδa∗ + (1− γ)π̂ω0

Y .

Proof. By again utilizing Equation (2) (of the supplementary material), the claim modifies to showing that

opt
ε
(x,y) = inf

u∈N δε(ω0)

Aω0

∑
z∈(XY)ω0

u(z) · (π∗({z})− π∗({z})).

Since, by Proposition 2, we know that dεX,Y(ω0) = opt
ε
(x,y) and dεX,Y(ω0) is by definition the infimum over all the

expressions on the right-hand side, the direction ≤ is immediate. So, it remains to show the direction ≥. To do so, choose
(π1, π2) ∈ Mω0

X ×Mω0

Y arbitrarily. Since both Mω0

X and Mω0

Y are of the form (11), we then know that there exist probability
measures ν1 and ν2 such that

π1 = γ · ν1 + (1− γ) · π̂ω0

X

and
π2 = γ · ν2 + (1− γ) · π̂ω0

Y .

Here, we utilized the fact that credal sets of the form (11) can be equivalently characterized as

Mω
Z =

{
π : π ≥ (1− γ) · π̂ω

Z

}
=
{
γ · ν + (1− γ) · π̂ω0

Z : ν probability measure
}
.

For u ∈ N δε(ω0)
Aω0

fixed (but arbitrary), we then can compute:∑
z∈(XY)ω0

u(z) · π1({z}) = γ ·
∑

z∈(XY)ω0

u(z) · ν1({z}) + (1− γ)
∑

z∈(XY)ω0

u(z) · π̂ω0

X ({z})

≥ γ · u(a∗) + (1− γ)
∑

z∈(XY)ω0

u(z) · π̂ω0

X ({z})

= γ ·
∑

z∈(XY)ω0

u(z) · δa∗({z}) + (1− γ)
∑

z∈(XY)ω0

u(z) · π̂ω0

X ({z})

=
∑

z∈(XY)ω0

u(z) · π∗({z})



Analogous reasoning yields: ∑
z∈(XY)ω0

u(z) · π2({z}) ≤
∑

z∈(XY)ω0

u(z) · π∗({z})

Putting the two together, we arrive at:∑
z∈(XY)ω0

u(z) · (π1({z})− π2({z})) ≥
∑

z∈(XY)ω0

u(z) · (π∗({z})− π∗({z}))

As π1, π2, and u were chosen arbitrarily, the inequality remains valid for the infimum, i.e.

inf
(π1,π2,u)∈Mω0

X ×Mω0
Y ×N δε(ω0)

Aω0

∑
z∈(XY)ω0

u(z) · (π1({z})− π2({z})) ≥ inf
u∈N δε(ω0)

Aω0

∑
z∈(XY)ω0

u(z) · (π∗({z})− π∗({z}))

Observing that the left side of this inequality by definition equals dεX,Y(ω0) and, therefore, by Proposition 2, also opt
ε
(x,y)

completes the direction ≥ and thus the proof. □

A.4 PROOFS OF PROPOSITIONS 5 AND 6: MULTI-DIMENSIONAL SPACES

Finally, we give proofs of Propositions 5 and 6 from Section 7 concerning several different characterizing properties of
the GSD-order for the special case of preferences systems arising from multi-dimensional spaces with differently scaled
dimensions. For this, recall that in Section 4 for a preference system A and a probability measure π we defined

F(A,π) :=
{
X ∈ AΩ : u ◦X ∈ L1(Ω,S1, π) ∀u ∈ UA

}
.

This definition is needed for stating the next proposition.

Proposition 5 Let π be a probability measure on (Ω,S1), and X = (∆1, . . . ,∆r), Y = (Λ1, . . . ,Λr) ∈ F(pref(Rr),π),
where the first 0 ≤ z ≤ r dimensions of pref(Rr) are of cardinal scale. Then, the following holds:

i) pref(Rr) is consistent.

ii) If z = 0, then R(pref(Rr),π) coincides with (first-order) stochastic dominance w.r.t. π and R∗
1 (short: FSD(R∗

1, π)).

iii) If (X,Y ) ∈ R(pref(Rr),π) and ∆j ,Λj ∈ L1(Ω,S1, π) for all j = 1, . . . , r, then

I. Eπ(∆j) ≥ Eπ(Λj) for all j = 1, . . . , r, and
II. (∆j ,Λj) ∈FSD(≥, π) for all j = z + 1, . . . , r.

Additionally, in the special case where all components of X are jointly independent and all components of Y are jointly
independent, properties I. and II. imply (X,Y ) ∈ R(pref(Rr),π) (i.e. also the converse implication holds).

Proof. i) Let α1, . . . , αr ∈ R+ and ϕz+1, . . . , ϕr : R → R strictly isotone functions. Define u : Rr → R by setting

u(x) :=

z∑
s=1

αs · xs +
r∑

s=z+1

αs · ϕs(xs).

Then one easily verifies that u defines a representation of pref(Rr), proving its consistency.

ii) Assume z = 0, i.e. all considered dimensions are purely ordinal. We claim that for A0 := [Rr, R∗
1, ∅] it holds

Upref(Rr) = UA0
. The direction ⊆ is trivial, so assume u ∈ UA0

arbitrary. It suffices to show that u represents arbitrary
pairs of pairs in R∗

2. As R∗
2 is antisymmetric for z = 0, this reduces to show that u strictly represents arbitrary pairs of

pairs in PR∗
2
. So, let ((v, w), (x, y)) ∈ PR∗

2
. This means that for all j ∈ {1, . . . , r} we have vj ≥ xj ≥ yj ≥ wj and that

there is j0 ∈ {1, . . . , r} such that either vj0 > xj0 or yj0 > wj0 . Together, this implies u(v) > u(x) ≥ u(y) ≥ u(w)
or u(v) ≥ u(x) ≥ u(y) > u(w), either way implying u(v) − u(w) > u(x) − u(y). Thus u ∈ Upref(Rr). As R(A0,π)

coincides with (first-order) stochastic dominance by definition and we have Upref(Rr) = UA0 also R(pref(Rr),π) coincides
with (first-order) stochastic dominance.



iii) Let (X,Y ) ∈ R(pref(Rr),π). We start by showing I, so choose j ∈ {1, . . . , r} arbitrary. By part i) of the proof, for every
n ∈ N, the function un : Rr → R defined by

un(x) := xj +
1

n
·
∑
s̸=j

xs

is a representation of pref(Rr), that is un ∈ Upref(Rr). Thus, by our assumption (X,Y ) ∈ R(pref(Rr),π), we know that we
have Eπ(un ◦X) ≥ Eπ(un ◦ Y ). This implies (by the linearity of the expectation operator)

Eπ(∆j) +
1

n
·
∑
s̸=j

Eπ(∆s) ≥ Eπ(Λj) +
1

n
·
∑
s ̸=j

Eπ(Λs).

Letting n→ ∞ on both sides gives Eπ(∆j) ≥ Eπ(Λj).
We use a very similar argument to see II: Choose j ∈ {z + 1, . . . , r} arbitrarily and let ϕ : R → R be strictly isotone. By
part i) of the proof, for every n ∈ N, the function u′n : Rr → R defined by

u′n(x) := ϕ(xj) +
1

n
·
∑
s̸=j

xs

is a representation of pref(Rr), that is un ∈ Upref(Rr). Thus, by our assumption (X,Y ) ∈ R(pref(Rr),π), we know that we
have Eπ(un ◦X) ≥ Eπ(un ◦ Y ). This implies (by the linearity of the expectation operator)

Eπ(ϕ ◦∆j) +
1

n
·
∑
s̸=j

Eπ(∆s) ≥ Eπ(ϕ ◦ Λj) +
1

n
·
∑
s̸=j

Eπ(Λs).

Letting n→ ∞ gives Eπ(ϕ ◦∆j) ≥ Eπ(ϕ ◦ Λj). As ϕ was chosen arbitrarily, this implies (∆j ,Λj) ∈FSD(≥, π).

To see the addition to part iii), let X = (∆1, . . .∆r) and Y = (Λ1, . . . ,Λr) have both jointly independent components,
respectively, and let I. and II. of iii) be true. Let furthermore u ∈ Upref(Rr) be an arbitrary utility function that represents the
preference system pref(Rr). We now show that Eπ(u ◦X) ≥ Eπ(u ◦ Y ) holds: Because of independence we can compute
the expectations of u ◦X and u ◦ Y by using Fubini’s theorem. To prove the inequality, we first integrate over the ordinal
part and use isotonicity of u in every integration. Then we integrate over the cardinal parts and iteratively use the fact that
the corresponding functions are representing the corresponding cardinal subsystem built by the components we did not
integrate over before. Formally, we arrive at:

Eπ(u ◦X) =

∫
Ω

u ◦Xdπ

(ind.)
=

∫
∆1(Ω)

· · ·
∫
∆r(Ω)

u(δ1, . . . , δz, δz+1, . . . δr)dπ∆r
. . . dπ∆z+1

dπ∆z
. . . dπ∆1

(⋆)

≥
∫
∆1(Ω)

· · ·
∫
Λr(Ω)

u(δ1, . . . , δz, λz+1, . . . λr)dπΛr
. . . dπΛz+1

dπ∆z
. . . dπ∆1

(⋆⋆)

≥
∫
Λ1(Ω)

· · ·
∫
Λr(Ω)

u(λ1, . . . , λz, λz+1, . . . λr)dπΛr . . . dπΛz+1dπΛz . . . dπΛ1

(ind.)
= Eπ(u ◦ Y )

Here, (⋆) is valid because, for fixed cardinal components, u is isotone in every ordinal component and we have first order
stochastic dominance, which means that the iterated integrals gets smaller if one switches from π∆k

to πΛk
.

Similarly, (⋆⋆) is valid because e.g., for the mapping

ψ : Rz−1 → R , (δ1, . . . , δz−1) 7→
∫
∆z(Ω)

u(δ1, . . . , δr)dπ∆z

is a positive (affine) linear transformation w.r.t. the corresponding subsystem. □



Corollary 1 If C = [C,Rc
1, R

c
2] is a bounded subsystem of pref(Rr) and X,Y ∈ F(C,π), then C is 0-consistent and ii) and

iii) from Prop. 5 hold, if we replace R(pref(Rr),π) by R(C,π), FSD(R∗
1, π) by FSD(Rc

1, π), and (X,Y ) ∈ R(pref(Rr),π) by
∀u ∈ NC : Eπ(u ◦X) ≥ Eπ(u ◦ Y ).

Proof. As, according to Proposition 5 i), we know that pref(Rr) is consistent, the same holds true for all of its subsystems.
Hence, C is consistent. Since C is assumed to be bounded, it then is 0-consistent by Observation 1. The rest of the Corollary
follows, since – by Observation 2 – for bounded preference systems it suffices to check for dominance only over all
normalized representations. □

Proposition 6 Let z = 1 and denote by Usep the set of all u : Rr → R such that, for (x2, . . . , xr) ∈ Rr−1 fixed, the
function u(·, x2, . . . , xr) is strictly increasing and (affine) linear and such that, for x1 ∈ R fixed, the function u(x1, ·, . . . , ·)
is strictly isotone w.r.t. the the componentwise partial order on Rr−1. Then Usep = Upref(Rr).

Proof. First, let u ∈ Upref(Rr). One easily verifies that, for x− := (x2, . . . , xr) ∈ Rr−1 fixed, the preference system
Z := [R, Rx−

1 , R
x−
2 ], where Rx−

1 :=≥ and Rx−
2 is defined by{

((t, u), (v, w)) :

(((
t
x−

)
,

(
u
x−

))
,

((
v
x−

)
,

(
w
x−

)))
∈ R∗

2

}
is a complete positive-difference structure in the sense of Krantz et al. [1971, Definition 1, p. 147]. According to Krantz
et al. [1971, Theorem 1, p. 147] this implies that any two representations of Z are positive (affine) linear transformations
of each other. But it is immediate that both u(·, x2, . . . , xr) and idR(·) are representations of Z. Thus, u(·, x2, . . . , xr) =
α · idR(·)+β for some α ∈ R+ and β ∈ R, proving the first claim of this direction. The second claim – i.e., the strict isotony
of the function u(x1, ·, . . . , ·) w.r.t. the the componentwise partial order on Rr−1 for fixed x1 ∈ R – is also immediate. Thus,
u ∈ Usep.

For the other direction, assume that u ∈ Usep. It follows directly from the assumptions that u is strictly isotone w.r.t. R∗
1. To

see that u also strictly represents R∗
2, choose ((x, y), (x′, y′)) ∈ R∗

2 arbitrary. We have two cases:
Case 1: ((x, y), (x′, y′)) ∈ IR∗

2
. This implies that x1 − y1 = x′1 − y′1 and therefore also x1 − x′1 = y1 − y′1. Moreover, one

easily verifies that the restriction of R∗
2 to the ordinal dimensions is antisymmetric . Since we have that x− componentwise

dominates x′− and vice versa and that y− componentwise dominates y′− and vice versa, this antisymmetry then implies that
x− = x′− and y− = y′−. Therefore, there are common α1, α2 ∈ R+ and β1, β2 ∈ R such that

u(x) = α1 · x1 + β1 , u(x′) = α1 · x′1 + β1

u(y) = α2 · y1 + β2 , u(y′) = α2 · y′1 + β2

Moreover, observe that α1 = α2, since otherwise there wolud be x∗ ∈ R with u(x∗, x−) < u(x∗, y−), which is not possible,
since u is strictly isotone w.r.t. R∗

1. Define

D := (u(x)− u(y))− (u(x′)− u(y′)).

Simple computations then yield

D = α1 · (x1 − x′1)− α2 · (y1 − y′1) = (x1 − x′1) · (α1 − α2)

which, as α1 = α2, implies D = 0.
Case 2: ((x, y), (x′, y′)) ∈ PR∗

2
. This implies x− ≥ x′− ≥ y′− ≥ y−, where ≥ is to be understood componentwise. Using

the same argument as seen before, this implies that there exists a α ∈ R+ and β1, β2, β3, β4 ∈ R such that

u(x) = α · x1 + β1 , u(x′) = α · x′1 + β3

u(y) = α · y1 + β2 , u(y′) = α · y′1 + β4

Thus, computing D defined as above yields:

D = α · ((x1 − y1)− (x′1 − y′1)) + β1 − β2 − β3 + β4

Sub-Case 2.1: x1 − y1 > x′1 − y′1. Observe that, as u is isotone w.r.t. R∗
1, we have that u(y′1, y

′
−) ≥ u(y′1, y). However, this

implies β4 ≥ β2. Analogous reasoning yields β1 ≥ β3. Using the assumptions of the sub-case, this implies D > 0.
Sub-Case 2.2: x1 − y1 = x′1 − y′1. Using the case assumption, this implies that either x− > x′− or y′− > y−, where the
> is to be understood as the strict part of the componentwise ≥. As u is strictly isotone w.r.t. R∗

1, this implies that either
u(y′1, y

′
−) > u(y′1, y) or u(x′1, x−) > u(x′1, x

′
−), which itself implies either β4 > β2 or β1 > β3. As we know β4 ≥ β2 and

β1 ≥ β3, this, together with the sub-case assumption, implies D > 0. □



B DETAILS ON IMPLEMENTATION AND REPRODUCIBILITY

In Section 8.1 we stated that the implementation of the constraint matrix has worst-case complexity O(s4). This worst case
occurs when everything in R∗

1 and R∗
2 is comparable and then

s · (s− 1) + (s · (s− 1)) · ((s · (s− 1))− 1) = s4 − 2s3 + s2

many pairwise comparisons have to be considered. Note that we omit the reflexive part of the pre-orders R∗
1 and R∗

2.

In implementing the constraint matrix, we exploit the fact that sorting the data set allows some comparisons to be skipped
immediately by considering only the ordinal components. In particular, if the ordinal variables have a small number of
categories compared to the sample size s, this can lead to a large proportion of comparisons being skipped. In the most
cases, this reduces the computational cost of computing the constraint matrix compared to a naive implementation. Of
course, in the worst case, if the observations grouped by their ordinal components are highly skewed and the largest ordinal
components correspond to the largest group, the computation time cannot be drastically reduced in this way.

We are interested in the non-regularized test statistic as well as the regularized test statistic with ε ∈ {0.25, 0.5, 0.75, 1},
see Section 8. For all these cases, we compute the test statistics based on the sample, as well as 1000 times on a permuted
version of that sample. Note that the linear programs for computing the test statistics based on the permuted data are identical
to that for the non-permuted data except for the objective function, see Section 5.2. In Section C (in the supplementary
material), we prove that the robustified test statistics are a shift of the non-robustified test statistic. Thus, the robustified test
statistics are immediately given.

The simulation is based on a random sample of the data set. Two of the data sets and the corresponding R-code can be found
here:

https://anonymous.4open.science/r/Robust_GSD_Tests

The data set used for the poverty analysis (ALLBUS) is freely accessible, but registration in the corresponding online portal
is needed.1

For the computation of the linear programs, we used the R interface of Gurobi optimizer, which is documented in Gurobi
Optimization, LLC [2020]. This is a commercial solver that offers free academic licenses2. In particular, the computation of
linear programs is faster than using the free and open source solvers known to us, see Meindl and Templ [2012]. We also used
the R-packages purrr, dplyr, slam, readr, tidyr, forcast, ggplot2, reshape2, tidyverse, ggridges, latex2exp, RColorBrewer,
rcartocolor and foreign for our implementation, see Mailund [2022], Yarberry and Yarberry [2021], Wickham et al. [2022],
Hornik et al. [2022], Wickham et al. [2023], Hyndman et al. [2023], Wickham and Chang [2014], Wickham [2022], Wickham
and RStudio [2022], Wilke [2022], Meschiari [2022], Neuwirth [2022], Nowosad [2022], R Core Team et al. [2022].

The computation was done for

• ALLBUS data set, see GESIS [2018], on a commodity desktop laptop with a 8-core Intel(R) Core(TM) i7-8665U CPU
@ 1.90GHz processor and 16 GB RAM in R version 4.2.2.

• dermatology data set, see Demiroz et al. [1998] accessed via Dua and Graff [2017], on a commodity desktop computer
with a 32-core Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz processor and 64 GB RAM in R version 4.2.1

• German credit data set, see Dua and Graff [2017], on a commodity desktop laptop with a 8-core Intel(R) Core(TM)
i7-10510U CPU @ 1.80GHz processor and 16 GB RAM in R version 4.2.2.

C CALCULATIONS FOR ROBUSTIFIED TEST STATISTICS

In Section 8 we show a graph visualizing the fraction of resamples in favor of non-rejection of H0 (i.e., the p-values) as a
function of the size of the contamination γ of the underlying linear-vacuous model (see Figure 3). We will briefly show here
how the exact function is calculated. For general (polyhedral) credal sets, a resample I is in favor of rejection of H0 under

1Further information on the survey and the data set itself can be found here: https://search.gesis.org/research_
data/ZA5240 (accessed: Febr 16, 2023)

2Further details can be found here: https://www.gurobi.com/academia/academic-program-and-licenses/ (ac-
cessed: Febr 16, 2023)

https://anonymous.4open.science/r/Robust_GSD_Tests
https://search.gesis.org/research_data/ZA5240
https://search.gesis.org/research_data/ZA5240
https://www.gurobi.com/academia/academic-program-and-licenses/


the robustified resampling scheme, if dεX,Y(ω0) > d
ε

I . Hence, the fraction of resamples in favor of rejection of H0 is given
by

1

N
·
∑
I∈IN

1{
dε
X,Y(ω0)>d

ε
I

}
where N denotes the number of resamples and IN is the corresponding set of resamples. In the special case that the credal
sets involved are γ-contamination models, we can use Proposition 4 (and a slight variation of it with π∗ and π∗ in reversed
roles) to obtain

dεX,Y(ω0) = (1− γ) · dεX,Y(ω0)− γ

and
d
ε

I = (1− γ) · dεI + γ

and, therefore, the condition in the indicator above is satisfied if and only if

dεX,Y(ω0)− dεI >
2γ

(1− γ)
.

Finally, if we interpret ε as a function parameter, then we can write the fraction of resamples in favor of non-rejection of H0

(i.e., the observed p-values) as a function of the size γ of the contamination of the underlying linear-vacuous model:

fε(γ) := 1− 1

N
·
∑
I∈IN

1{
dε
X,Y(ω0)−dε

I>
2γ

(1−γ)

}.
D FURTHER DETAILS ON THE APPLICATIONS

D.1 DATA SETS

We applied our analysis to three different data sets:

• For the poverty analysis, see Section 8, we used the ALLBUS data set. The data set is described by GESIS [2018] and
Breyer and Danner [2015]. As mentioned already in the previous section, the data set is freely accessible, but only after
registration in the corresponding online portal: https://search.gesis.org/research_data/ZA5240
(accessed: 08.02.2023). Please download the file ZA5240_v2-2-0.sav (5.31MB) there.
The analysis was done on a sample consisting of 100 female and 100 male observations.

• We analyzed the dermatology data set, see Demiroz et al. [1998] accessed via Dua and Graff [2017].
The analysis was performed on a sample of 46 individuals with family history of eryhemato-squamous disease and 100
individuals without.

• We analyzed the German credit data set, see Dua and Graff [2017].
The analysis was performed on a sample of 100 credit risks classified as good and 100 credit risks classified as poor
individuals.

D.2 APPLICATION ON CREDIT DATA

We focus on three variables (features) in the German credit data set Dua and Graff [2017]: credit amount (numeric), credit
history (ordinal, 5 levels ranging from “delay in paying off in the past” to “all credits paid back duly”) and employment
status (ordinal, 5 levels ranging from “unemployed” to “present employment longer than 7 years”). We use a subsample with
n = m = 100 high-risk applicants and low-risk applicants each. We are interested in the hypothesis that high-risk applicants
are dominated by low-risk applicants w.r.t. GSD. The test results (see Figures 1 and 2 in the supplementary material) can be
interpreted analogously to Section 8: For ε ∈ {0.75, 1} we reject for the common significance level of α ≈ 0.05. This time,
we do not reject in case of ε = 0.5.

Similar to the example of poverty analysis in Section 8, rejecting H0 does not necessarily mean that high-risk applicants are
dominated by low-risk applicants. They could also be incomparable, see also Section 5. However, our tests with reversed
variables give no evidence of incomparability: The observed p-values for all these reversed tests are all 1.

https://search.gesis.org/research_data/ZA5240
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Figure 1: Distributions of dεI with ε ∈ {0, 0.25, 0.5, 0.75, 1} obtained from N = 1000 resamples of Credit data. Black
stripes show exact positions of dεI values. Vertical black line marks median. Red line shows value of the respective observed
test statistics dεX,Y(ω).
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Figure 2: P-values as function of the contamination γ (see Supp. C) for tests with different regularization strength ε
performed nd on credit data set. Dotted red line marks significance level α = 0.05.



D.3 APPLICATION ON DERMATOLOGICAL DATA

We focus on three variables (features) in the dermatology data set Demiroz et al. [1998], Dua and Graff [2017]: age of skin
(numeric), the intensity of itching (ordinal, 4 levels ranging from “no itching” to “strong itching”) and erythema (redness of
skin) (ordinal, 4 levels again ranging from no to highest intensity). We use a subsample with n = 46 patients with a family
history of eryhemato-squamous disease and m = 100 without. We are interested in the hypothesis that patients without
a family history of the disease are dominated by patients without a family history with respect to GSD. The test results
(see Figures 3 and 4 in the supplementary material) can be interpreted analogously to Section 8: For ε ∈ {0.75, 1} we
again reject for the common significance level of α ≈ 0.05. However, the p-values are much higher than in the other two
applications, see also Figure 4 (in the supplementary material).

Similar to the example of poverty analysis in Section 8, rejecting H0 does not necessarily mean that patients with a family
history of eryhemato-squamous disease are dominated by patients without. They could also be incomparable; see also
Section 5. However, our tests with reversed variables give no evidence of incomparability: The observed p-values for all
these reversed tests are all 1.
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Figure 3: Distributions of dεI with ε ∈ {0, 0.25, 0.5, 0.75, 1} obtained from N = 1000 resamples of dermatology data. Black
stripes show exact positions of dεI values. Vertical black line marks median. Red line shows value of the respective observed
test statistics dεX,Y(ω).
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Figure 4: P-values as function of the contamination γ (see Supp. C) for tests with different regularization strength ε
performed on Dermatology data set. The dotted red line marks significance level α = 0.05.

References

Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2020. URL https://www.gurobi.com/
wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf. [Online; Accessed
08.02.2023].

B. Breyer and D. Danner. Skala zur Erfassung des Lebenssinns (ALLBUS). In Zusammenstellung sozialwissenschaftlicher
Items und Skalen (ZIS) (GESIS – Leibniz-Institut für Sozialwissenschaften), volume 10, 2015.

G. Demiroz, H. Govenir, and N. Ilter. Learning differential diagnosis of eryhemato-squamous diseases using voting feature
intervals. Artificial Intelligence in Medicine, 13(3):147–165, 1998.

D. Dua and C. Graff. UCI machine learning repository, 2017. http://archive.ics.uci.edu/ml.

GESIS. Allgemeine Bevölkerungsumfrage der Sozialwissenschaften ALLBUS 2014. GESIS Datenarchiv, Köln. ZA5240
Datenfile Version 2.2.0, https://doi.org/10.4232/1.13141, 2018.

K. Hornik, D. Meyer, and C. Buchta. Package ‘slam’, October 2022. URL https://cran.r-project.org/web/
packages/slam/slam.pdf. [Online; Accessed 08.02.2023].

R. Hyndman, G. Athanasopoulos, C. Bergmeir, G. Caceres, L. Chhay, K. Kuroptev, M. O’Hara-Wild, F. Petropoulos S.
Razbash, E. Wang, F. Yasmeen, F. Garza, D. Girolimetto, R. Ihaka, R Core Team, D. Reid, D. Shaub, Y. Tang, X. Wang,
and Z. Zhou. Package ‘forcast’, January 2023. URL https://cran.r-project.org/web/packages/
forecast/forecast.pdf. [Online: Accessed 09.02.2023].

D. Krantz, R. Luce, P. Suppes, and A. Tversky. Foundations of Measurement. Volume I: Additive and Polynomial
Representations. Academic Press, 1971.

T. Mailund. Functional programming: purrr. In R 4 Data Science Quick Reference: A Pocket Guide to APIs, Libraries, and
Packages, pages 89–110. Springer, 2022.

https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
http://archive.ics.uci.edu/ml
https://cran.r-project.org/web/packages/slam/slam.pdf
https://cran.r-project.org/web/packages/slam/slam.pdf
https://cran.r-project.org/web/packages/forecast/forecast.pdf
https://cran.r-project.org/web/packages/forecast/forecast.pdf


B. Meindl and M. Templ. Analysis of commercial and free and open source solvers for linear optimization problems.
Eurostat and Statistics Netherlands within the project ESSnet on common tools and harmonised methodology for SDC in
the ESS, 20, 2012.

S. Meschiari. Package ‘latex2exp’, November 2022. URL https://cran.r-project.org/web/packages/
latex2exp/latex2exp.pdf. [Online: Accessed 09.02.2023].

E. Neuwirth. Package ‘rcolorbrewer’, October 2022. URL https://cran.r-project.org/web/packages/
RColorBrewer/RColorBrewer.pdf. [Online: Accessed 09.02.2023].

J. Nowosad. Package ‘rcartocolor’, October 2022. URL https://cran.r-project.org/web/packages/
rcartocolor/rcartocolor.pdf. [Online: Accessed 09.02.2023].

R Core Team, R. Bivand, V. Carey, S. DebRoy, S. Eglen, R. Guha, S. Herbrandt, N. Lewin-Koh, M. Myatt, M. Nelson,
B. Pfaff, B. Quistorff, F. Warmerdam, S. Weigand, and Inc. Free Software Foundation. Package ‘foreign’, December
2022. URL https://cran.r-project.org/web/packages/foreign/foreign.pdf. [Online: Accessed
09.02.2023].

H. Wickham. Package ‘reshape’, October 2022. URL https://cran.r-project.org/web/packages/
reshape/reshape.pdf. [Online: Accessed 09.02.2023].

H. Wickham and W. Chang. Package ‘ggplot2’, December 2014. URL https://cran.microsoft.com/
snapshot/2015-01-06/web/packages/ggplot2/ggplot2.pdf. [Online: Accessed 09.02.2023].

H. Wickham and RStudio. Package ‘tidyverse’, October 2022. URL https://cran.r-project.org/web/
packages/tidyverse/tidyverse.pdf. [Online: Accessed 09.02.2023].

H. Wickham, J. Hester, R. Francois, J. Bryan, and S. Bearrows. Package ‘readr’, October 2022. URL https://cran.
r-project.org/web/packages/readr/readr.pdf. [Online; Accessed 08.02.2023].

H. Wickham, D. Vaughan, M. Girlich, K. Ushey, and PBC Posit. Package ‘tidyr’, January 2023. URL https://www.
vps.fmvz.usp.br/CRAN/web/packages/tidyr/tidyr.pdf. [Online: Accessed 09.02.2023].

C. O. Wilke. Package ‘ggridges’, October 2022. URL https://cran.r-project.org/web/packages/
ggridges/ggridges.pdf. [Online: Accessed 09.02.2023].

W. Yarberry and W. Yarberry. Dplyr. CRAN Recipes: DPLYR, Stringr, Lubridate, and RegEx in R, pages 1–58, 2021.

https://cran.r-project.org/web/packages/latex2exp/latex2exp.pdf
https://cran.r-project.org/web/packages/latex2exp/latex2exp.pdf
https://cran.r-project.org/web/packages/RColorBrewer/RColorBrewer.pdf
https://cran.r-project.org/web/packages/RColorBrewer/RColorBrewer.pdf
https://cran.r-project.org/web/packages/rcartocolor/rcartocolor.pdf
https://cran.r-project.org/web/packages/rcartocolor/rcartocolor.pdf
https://cran.r-project.org/web/packages/foreign/foreign.pdf
https://cran.r-project.org/web/packages/reshape/reshape.pdf
https://cran.r-project.org/web/packages/reshape/reshape.pdf
https://cran.microsoft.com/snapshot/2015-01-06/web/packages/ggplot2/ggplot2.pdf
https://cran.microsoft.com/snapshot/2015-01-06/web/packages/ggplot2/ggplot2.pdf
https://cran.r-project.org/web/packages/tidyverse/tidyverse.pdf
https://cran.r-project.org/web/packages/tidyverse/tidyverse.pdf
https://cran.r-project.org/web/packages/readr/readr.pdf
https://cran.r-project.org/web/packages/readr/readr.pdf
https://www.vps.fmvz.usp.br/CRAN/web/packages/tidyr/tidyr.pdf
https://www.vps.fmvz.usp.br/CRAN/web/packages/tidyr/tidyr.pdf
https://cran.r-project.org/web/packages/ggridges/ggridges.pdf
https://cran.r-project.org/web/packages/ggridges/ggridges.pdf

