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Abstract. In this paper, we develop statistical models for partial orders
where the partially ordered character cannot be interpreted as stemming
from the non-observation of data. After discussing some shortcomings of
distance based models in this context, we introduce statistical models for
partial orders based on the notion of data depth. Here we use the rich
vocabulary of formal concept analysis to utilize the notion of data depth
for the case of partial orders data. After giving a concise definition of
unimodal distributions and unimodal statistical models of partial orders,
we present an algorithm for efficiently sampling from unimodal models
as well as from arbitrary models based on data depth.

Keywords: partial orders · partial rankings · data depth · formal con-
cept analysis · unimodality · quasiconcavity.

1 Introduction and Motivation

Partial orders play a role in a broad range of scientific disciplines. In many
of these disciplines like revealed preference theory, social choice theory, deci-
sion making under uncertainty, social-economics (Human Development Index,
costumer preference rankings etc.) or statistics and machine learning, studying
partial orders has attracted more and more researchers (see [27], [5], [15, 16],
[9, 22, 17] and [11] for recent works in the respective discipline). Consequently,
there are many approaches that can deal with partial orders. However, in most
approaches known to the authors, the incompleteness of the involved orders is
interpreted as stemming from missing data, see, e.g., [21, 24]. In other words, an
explicit missing mechanism is modeled or at least assumed. In contrast, in this
paper we explicitly assume that the incompleteness of the order is not due to
missing of data. Instead, we understand an observed incomparability between
two items as a precise observation of a factual incomparability that actually
exists.

Many of the existing models are based on a distance measure on the set
of partial orders. They obtain a center-outward ordering of all partial orders
with respect to a predefined partial order that represents the center. However,
often the distance measures are based on the linear extensions of the partial
order and thus do not take into account the incomparable character, but imitate
an underlying true linear order. Therefore (and for other reasons given below),
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in what follows, we use a (statistical) depth function instead which allows an
ordering of the partial orders w.r.t all other (observed) orders. Depth functions
are commonly used in robust and nonparametric statistics. Based on these depth
functions, we present unimodal statistical models for partial orders. Therefore,
we first need to define unimodality in the context of partial orders, where we
make use of the theory of formal concept analysis, see Section 2 and Section
3. In Section 4, we propose some concrete depth functions, and in Section 5
we introduce an algorithm for sampling from the proposed statistical models.
Finally, we give a brief conclusion in Section 6.

To illustrate how the currently used distance measures implicitly mimic the
missing mechanism and other counter-intuitive structures, let us start by dis-
cussing the current approaches that use distance measures for (partial) orders.
There are several proposals for adequately defining a meaningful distance con-
cept between (partial) orders in the literature (cf, e.g., [6, 10]) which can be
used to establish distance based statistical models for partial orders. Through-
out the paper let X be a finite ground space with n ≥ 3 elements and let
P denote the set of all partial orders1 (i.e., all reflexive, transitive and anti-
symmetric binary relations) on X . Two prominent distance measures for partial
orders are discussed for example in [6]: The nearest neighbour and the Haus-
dorff distance. Both of these distances rely on the idea of first computing the
set of all linear extensions of the considered partial orders and then, each in
its own manner, generalizing the well-known Kendall’s τ -distance (see [18]) for
linear orders (i.e. counting pairs that are ranked oppositely by the considered
orders). However, such an approach has the following counter-intuitive property:
The nearest neighbour distance systematically assigns lower distance values if
sparse partial orders are involved. The nearest neighbour distance is defined
as dNN (P1, P2) := minL1∈lext(P1) minL2∈lext(P2) τ(L1, L2) for two orders P1, P2

where lext(P ) denotes the set of all linear extensions of a partial order P and
τ denotes the Kendall’s τ -distance for linear orders mentioned before. Then it
is immediate from the definition that dNN (P̃1, P2) ≤ dNN (P1, P2) for arbitrary
partial orders P̃1 ⊆ P1, since this implies lext(P1) ⊆ lext(P̃1) and therefore
the minimum is taken over a super-set of the original one. Most extremely,
the minimal distance is attained whenever one of the considered partial orders
is the trivial one consisting solely of the diagonal DX := {(x, x) : x ∈ X},
whereas two partial orders differing only in few pairs receive non-minimal dis-
tance value. This seems to be a very counter-intuitive property of this gener-
alized distance measure. An analogous line of argumentation applies when the
nearest neighbour distance is replaced by the directed Hausdorff hemi-metric
mH(P1, P2) := max

L1∈lext(P1)
min

L2∈lext(P2)
τ(L1, L2). Then, in a dual manner, DX (if

seen as the first argument in the Hausdorff hemi-metric,) has always the max-
imal distance to other orders whereas a linear order L has always a smaller
distance to other orders compared to any other partial order P ⊆ L. Similar
arguments can be given for the usual symmetrized non-directed Hausdorff dis-

1 In the sequel, we will also shortly say order instead of partial order.
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tance defined by dH(P1, P2) := max{mH(P1, P2),mH(P2, P1)}. Alternatively,
one could directly generalize Kendall’s τ to partial orders without looking at
linear extensions. This would result for example in one of the two expressions
τs(P1, P2) := |∆(P1, P2)| = |(P1 ∪ P2) \ (P1 ∩ P2)| or τa(P1, P2) := |{(x, y) | x ̸=
y, (x, y) ∈ P1, (y, x) ∈ P2}|, both, in a way, generalizing the idea of counting pairs
that are ranked oppositely by the considered partial orders. However, whereas
τa has the same problem like the nearest neighbour distance, the expression τs
would lead, as will be shown in Section 2, Example 1, to statistical models that
are not completely quasiconcave, which means that it seems to be impossible to
build a simple unimodal model with such a distance (cf., Definition 1). Further-
more, τs treats pairs which are in the relation and pairs being not in the relation
in exact the same way, and one can ask if this is natural. As we will see later,
our approach that uses a depth function treats pairs being in the relation or not
seemingly differently. (Note that a partial order is transitive but not necessarily
negatively transitive, so there is in fact some asymmetry between a pair being in
the relation or not.) With these problems in mind, we propose statistical mod-
elling of partial orders based on a depth function. The model idea is analogous to
a distance based version of the form P (X = x) = Cλ · Γ (λ · d (µ, x)), where, Cλ

is a normalizing constant, d : P × P −→ R≥0 is a distance, Γ : R≥0 −→ R≥0

is a (weakly decreasing) decay function, µ ∈ P is a location parameter and
λ ∈ R>0 is a scale parameter. Now, instead of a distance function, in this paper
we work with a depth function and a corresponding statistical model given by

P (X = x) = Cλ · Γ (λ · (1−Dµ (x))) (1)

where now Dµ is a depth function that is maximal at partial order µ. Since
depth functions are usually only used for data in Rd we have to adapt the notion
of data depth to partial order data, for which we use formal concept analysis.

2 Formal Concept Analysis, Data Depth and Unimodality

In this section we only touch a few aspects about the theory of formal concept
analysis and we refer the reader to [14] for more details. The basis of formal
concept analysis is the definition of a formal context K = (G,M, I) which is
a generalization and formalization of a cross table. Here, G is a set of objects,
M a set of binary attributes and I ⊆ G×M a relation. We say that an object
g has an attribute m if (g,m) ∈ I is true. For example cross table 1 describes
a formal context with G = {µ, g, h, i}, M = {m1, . . . ,m6} and the relation I
is given by the crosses. By the use of the following derivation operators, we
obtain a description of the relation between the object and attribute set:

Ψ : 2G → 2M : A 7→ {m ∈ M | ∀g ∈ A : (g,m) ∈ I}
Φ : 2M → 2G : B 7→ {g ∈ G | ∀m ∈ B : (g,m) ∈ I}.

Here Ψ(A) contains all the attributes that each object in A has, and Φ◦Ψ(A) ⊆ G
are all objects that have all attributes in Ψ(A). The tuple (Φ ◦ Ψ(A), Ψ(A)) for
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A ⊆ G is called a formal concept, Φ ◦ Ψ(A) its extent, and Ψ(A) its intent.
The construction of the two derivation operators allows to determine the relation
I when the set of all concepts is known. Note that Ψ(A) = Ψ ◦ Φ ◦ Ψ(A) holds,
and thus each concept is uniquely described by its extent or intent. Moreover,
the set of extents and the set of intents yield a closure system with Φ ◦ Ψ and
Ψ ◦Φ, respectively, the corresponding closure operator. Note that if A ⊆ G lies in
an extent E, then the closure operator Φ◦Ψ ensures that every object having all
attributes of Ψ(A) is also an element of E. Thus, A ⊆ E implies that Φ◦Ψ(A) ⊆
E. With this, we say that the pair A,B ⊆ G is an (object) implication (we
denote this by A → B) if Φ◦Ψ(A) ⊇ Φ◦Ψ(B) holds. Moreover, one can show that
the set of all implications that follow from the extent set completely describe the
extent set itself. Within this paper, we use formal implications between objects
to model a notion of betweenness. For example {g, h} −→ {i} can be interpreted
as “object i lies between object g and object h” (or “object i lies in the space
that is spanned by the objects g and h”), because object i has all attributes that
are shared by both g and h. (Note that we do not restrict the premise of a formal
implication to have exactly two objects.) For further discussion of a family of
implications, see [2] and [14]. If non-binary attributes are considered, then they
are converted into a set of binary attributes by using a so-called conceptual
scaling method (see Section 3).

Our approach is to represent the set of partial orderings by a formal context
and, using the properties of a formal context, to define the notion of unimodality
and depth function. By using the following properties that a function f : G → R
can satisfy on a formal context K, we define the notion of unimodality.

Definition 1. Let K = (G,M, I) be a formal context and let f : H −→ R with
H ⊆ G be a function. Then f is called

i) isotone if for all g, h ∈ H we have {g} −→ {h} =⇒ f(g) ≤ f(h);
ii) 2-quasiconcave if for arbitrary objects g, h, i ∈ H we have {g, i} −→

{h} =⇒ f(h) ≥ min{f(g), f(i)};
iii) completely quasiconcave if for every finite set of objects {g1, . . . , gn} ⊆ H

we have {g1, . . . , gn−1} −→ {gn} =⇒ f(gn) ≥ min{f(g1), . . . f(gn−1)};
iv) strongly quasiconcave if for every finite set {g1, . . . , gn} ⊆ H of size n ≥

2 we have {g1, . . . , gn−1} −→ {gn} =⇒ f(gn) > min{f(g1), . . . f(gn−1)};
v) star-shaped if there exists a center c ∈ H such that for all g ∈ H we have

{c, g} −→ {h} =⇒ f(h) ≥ min(f(c), f(g)).

Additionally, a probability measure P on a finite G is called unimodal (strictly
unimodal) if its probability function, restricted to its support {g ∈ G | P ({g}) >
0}, is completely quasiconcave (strongly quasiconcave).

In general, depth functions measure outlyingness and centrality of an observation
w.r.t. a data cloud or an underlying probability measure. We apply the concept
of data depth to partial order data represented by a formal context and we de-
note it by D : G → R≥0. Note that it depends on the formal context. Moreover,
if we ensure that the depth function is completely quasiconcave (strongly quasi-
concave), then the statistical model given in (1) is unimodal (strictly unimodal).
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Our notion of quasiconcavity is an adaption of classical quasiconcavity which
was already used (e.g., in [23]) for classical data depth for Rd. In particular, here
we emphasize (complete) quasiconcavity because it most adequately renders the
idea of an unimodal distribution of partial orders that would be induced by a
statistical model that uses a quasiconcave depth function: Quasiconcavity would
ensure that we have no point that is a local minimum of the probability function
w.r.t. the notion of betweenness that is appropriate for a formal concept analysis
view on partial orders. Another nice feature of complete quasiconcavity is the
fact that this property is equivalent to the property that the upper level sets
Dα := {g ∈ G | D(g) ≥ α} of the depth function D are extents. Thus, every
upper level set can be nicely described by a formal concept which makes them
descriptively accessible, especially the fact that they cannot only be exactly
described by objects, but also by attributes, is very convincing.

Example 1. Let K = (G,M, I) be given by cross table 1. Then, the depth func-
tion Dµ with mode µ given by Dµ(g) := |Ψ(µ)∩Ψ(g)|, together with the concep-
tual scaling of Section 3 can be shown to be exactly the depth-based formulation
of a distance based approach with τs. It is 2-quasiconcave but in general not com-
pletely quasiconcave and therefore is not appropriate to define a unimodal dis-
tribution. Note that for arbitrary contexts, Dµ is generally not 2-quasiconcave.
Note further that Dµ is at least star-shaped for arbitrary contexts. Furthermore,
a generalization of Tukey’s depth T (cf., [25]) and a localized version of Tukey’s
depth Tµ with mode µ can be defined via

T(g) := 1− max
m∈M\Ψ({g)}

|Φ({m})|
|G|

; Tµ(g) := 1−

max
m∈M\Ψ({g}),

µIm

|Φ({m})|

|G|
, (2)

respectively. (Here the empty maximum is defined as 0.) Both T and Tµ are
completely quasiconcave functions.

m1 m2 m3 m4 m5 m6

µ x x x x x

g x

h x x x

i x x x

Table 1. Illustration of the difference between complete and 2-quasiconcavity.

3 Formal Context Defined by All Partial Orders

In our case the set G is exactly the set P of all partial orders on X . Note
that we regard a partial order not necessarily as a linear order together with
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a missing mechanism. Therefore, as attributes we also include the property of
being incomparable pairs and get

M := {“xi ≤ xj” | i, j = 1, . . . , n, i ̸= j}︸ ︷︷ ︸
=:M≤

∪{“xi ̸≤ xj” | i, j = 1, . . . , n, i ̸= j}︸ ︷︷ ︸
:=M̸≤

.

Since we consider only reflexive relations the attributes “xi ≤ xi” and “xi ̸≤
xi” are redundant and therefore not included here. Note that each order g has
n(n−1) many attributes B = Ψ({g}) which can be divided into the set B≤ ⊆ M≤
and B̸≤ ⊆ M ̸≤. In particular, we have that either (xi, xj) lies in g or not and thus
we can conclude (g, “xi ≤ xj”) ∈ I ⇔ (g, “xi ̸≤ xj”) ̸∈ I & (g, “xj ̸≤ xi”) ∈ I.
This means if a pair (xi, xj) exists then the attribute “xi ̸≤ xj” cannot hold,
but “xj ̸≤ xi” must be true. The same is true for the reverse. Indeed, ensuring
that a pair (xi, xj), i ̸= j is in an order g or not has a different strength of
restriction, i.e., if we assume that (xi, xj) ∈ g, then g−1 := {(xj , xi) | (xi, xj) ∈
g} satisfies the condition (xi, xj) ̸∈ g−1. Thus, the number of orders g̃ fulfilling
the condition (xi, xj) ̸∈ g̃ is larger than the number of orders g fulfilling (xi, xj) ∈
g. Additionally, because of symmetry these numbers are independent of the
concrete pair (xi, xj).

First let us go one step back and consider the formal context given only by
the attribute setM≤. In this case, for an isotone depth functionD and two orders
g, h with g ⊆ h we have D(g) ≤ D(h). Thus, we would obtain again a depth
concentration on linear orders. Furthermore, if the depth function is additional
2-quasiconcave and we consider the space of all partial orders, then at least half
of all partial orders must have equal depth. More precisely, the depth must be
minimal. To see this, let g be an order and let g−1 be the inverse order. We obtain
that {g, g−1} −→ G and therefore either the depth of g or the depth of g−1 is
minimal. Thus, because the map g 7→ g−1 is a bijection, half of all orders have
minimal depth. Note that the stronger property of strong quasiconcavity cannot
be fulfilled by any depth function: Assume we have four orders g1, . . . , g4 where
all pairs of orders have no attribute m ∈ M≤ in common. Then {g1, g2} −→ G
and therefore min{D(g1), D(g2)} < D(gi), i = 3, 4. But since {g3, g4} −→ G this
is a contradiction to min{D(g3), D(g4)} < D(gi), i = 1, 2. Note that for |X | ≥ 3
there exist four linear orders fulfilling this property. Let us now return to the
formal context given by the entire attribute set M .

Then, the same argument for the non-existence of a strongly quasiconcave
depth function from above would still apply for the extended attribute set M .
Beyond this, now the context defined here contains no two different orders g
and h such that Ψ(g) ⊆ Ψ(h). Thus, for an isotone depth, isotonicity alone
does not imply that the depth value of one order is constrained by the depth
value of any other order. In contrast, 2-quasiconcavity would still lead to some
restriction on the depth function: Let g be an order such that the complement
order (i.e. gc := X × X \ g) is also an order. Then one of the orders must have
minimal depth, since {g, gc} −→ G. If we take G as the set of all partial orders,
then examples of such orders are exactly the linear orders. If, in contrast, one
had chosen G as the set of all quasiorders, then exactly all negatively transitive
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orders g would have the property that also gc is in G and therefore one of g or
gc would have minimal depth.

4 Specifying Unimodal Distributions of Partial Orders

In this section, we discuss methods for generating unimodal distributions of
partial orders based on three concrete depth functions. Firstly, we will discuss
Tukey’s depth defined by equation (2). Secondly, we define a generalization of
the convex hull peeling depth (see [4]), which we will call peeling depth, here. It
is sometimes said that the convex hull peeling depth has the disadvantage that
it can only order the data points from outwards to inwards. In contrast, in our
situation, we are able to directly specify a mode of the distribution and therefore
we know beforehand, where ’the inwards’, i.e., the mode, is exactly located.
With this, we can in fact order the data points from inwards to outwards by
starting from the mode and successively enclosing further layers. Thus, thirdly,
we can define a new depth function that we call enclosing depth, here. The
generalization of Tukey’s depth for data values or probability distributions on
arbitrary complete lattices or formal contexts was introduced in [25] and applied
to the case of ranking data in [26]. The definition is given in equation (2). Before
discussing all three data depths, we firstly define the remaining two:

Definition 2. Define the peeling depth P by P(extr(G)) := 1
|G| and

P

(
extr

(
G\P−1

([
0,

i

|G|

])))
=

i+ 1

|G|
, i = 1, 2, . . .

Additionally, define the localized peeling depth Pµ w.r.t. mode µ ∈ G simply by
adding a high enough amount of objects which have exactly the same attributes as
µ to the original context G. The operator extr is here the extreme point operator
which maps a set A to the set of all its extreme points.2 Note that this definition
is only well defined if the underlying context is meet-distributive.3Furthermore,
let us define the enclosing depth Eµ w.r.t. mode µ by Eµ ((Φ ◦ Ψ)({µ})) = 1
and

Eµ

(
encl

(
(Eµ)

−1

([
i

|G|
, 1

])))
=

i− 1

|G|
; i = |G|, |G| − 1, . . .

2 A point g ∈ A is an extreme point of A if A\{h ∈ G | Ψ({h}) = Ψ({g})}↛ {g}.
3 A context is called meet-distributive, if every extent is generated by all extreme
points of the extent. In our situation, the underlying context is not meet-distributive,
but it is possible to replace the extreme point operator by another appropriate
operator that maps a set A to a set B ⊆ A that implies A and is minimal w.r.t. this
property. Note that for such an operator the obtained depth function is generally
not quasiconcave anymore. Another possibility would be the operator ˜extr(A) :=
extr(A)∪A\(Φ◦Ψ)(extr(A)). This operator would lead to a completely quasiconcave
depth function. Note further that this operator is generally not minimal which means
that the number of depth layers is usually lower compared to a minimal operator.
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Here, encl denotes an operator which we would like to call an enclosing operator.
Concretely, we have in mind an operator encl : H −→ 2G with H ⊆ 2G that for
all A ∈ H satisfies the three properties i): encl(A) ∩ A = ∅, ii): encl(A) −→ A
and iii): (Φ ◦ Ψ) (encl (A)) is minimal w.r.t. properties i) and ii).

Now we discuss, how one can specify with the above depth functions a unimodal
distribution of orders with a given mode and one scale parameter. The sim-
plest distribution, which can be always defined in a finite setting, is the uniform
distribution. To specify a distribution that is in some certain sense distributed
around a given mode, one simple approach would be to first generate every par-
tial order exactly one time (this would correspond to a uniform distribution)
and then to simply add a big amount of partial orders that are identical to
the mode. Then, based on the corresponding data depth that is obtained for
this data set, one can define a distribution according to equation (1). (Note
that generally the obtained distribution is different from a mixture of a uni-
form distribution and a distribution that equals the mode with probability one.)
However, for Tukey’s depth, due to reasons of symmetry one can show that the
obtained distribution of orders would assign the mode one probability p and ev-
ery other order that differs from the mode exactly one of two probability values
q or r. More concretely, the localized Tukey’s depth could then be written as

Tµ(g) = 1 − max

{
max

(p,q)∈µ\g
αp,q, max

(p,q)∈g\µ
βp,q

}
with4 αp,q, βp,q ∈ [0, 1], where

actually αp,q and βp,q do not depend on p or q. This seems to be somehow un-
satisfying. Of course, one can use Tukey’s depth based on another (empirically
or analytically) given distribution, but then, in the first place one is back at
the “... major outstanding problem in ranking theory ...” and has to specify a
“... suitable population of ranks in non-null cases...” ([19]). Alternatively, one
can replace αp,q and βp,q by other weights that depend on the pairs (p, q), actu-
ally fortunately without losing the quasiconcavity. For this weighted Tukey-type
depth function one would have to specify only n2 values instead of 2n

2/4 or more
values (cf., [20]), which would be needed for a completely nonparametric ap-
proach. Because this can still be very demanding, we will later use an analysis of
the enclosing depth to get a rough guidance for specifying the weights. For the
peeling depth there seems to be not so much ties compared to Tukey’s depth.
However, it seems a little bit counter-intuitive to specify a distribution of orders
that are distributed around a mode by not locally looking at a neighbourhood
of the mode but instead by globally ordering the data points from outwards to
inwards. Compared to other applications of data depth where one does not know
the location beforehand but where the problem is actually the estimation of the
mode of the distribution, here we are in the comfortable situation that we can
simply specify the mode. Therefore, in the sequel, we will focus on the enclosing
depth (applied for the case G := P). Also here, because of the high amount
of symmetries there are many ways of defining an enclosing operator and corre-
sponding depth layers. One way out of this would be to compute in a first step

4 This also shows an asymmetry between pairs that are in relation and pairs that are
not in relation.
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for every partial order the expected depth value under a stochastic choice of the
layer that is built in every step. This is of course possible and also a simulation
from such a model can be exactly done. However, the obtained depth function is
not completely quasiconcave. Therefore, one can in a second step build the clo-
sure of every depth contour to obtain a completely quasiconcave depth function.
For this, one has to analyze in detail, how the expected depth values of the first
step exactly look like, which seems to be a very difficult problem. Therefore, we
only analyze the situation for total orders and a totally ordered mode µ under a
conceptual scaling of the partial orders that uses only M≤. With this analysis we
are able to roughly oversee the situation for the enclosing depth and we will use
the results to guide the specification of the weights within the modified Tukey’s
depth (see above) under a conceptual scaling that uses both M≤ and M≰: Let

(p, q) ∈ µ. Define ∆µ(p, q) simply as the “distance” between p and q w.r.t. the
mode µ measured by the number of pairs between p and q w.r.t. the covering
relation of µ. Furthermore, for x ∈ P define sµ(x) := max

(p,q)∈µ\x
∆µ(p, q). Then

one can show that total orders x with a higher sµ(x) have a lower depth value
w.r.t. the enclosing depth E µ. Thus, for a weighted version of Tukey’s depth
function one can weight pairs (p, q) with a higher ∆µ(p, q) correspondingly with
a higher weight, e.g., via αp,q ∝ ∆µ(p, q). (For pairs with the same value it
would be natural to choose the same weight). Now, the problem is to specify
the corresponding weights for pairs (p, q) ∈ x\µ. Because we would like to think
from the direction of the mode µ and not from the perspective of x, we do not
want to simply change the roles of µ and x. The problem here is that it seems
to be somehow difficult to order pairs (p, q) w.r.t. the mode µ that are not in
relation w.r.t. µ. However, there are some possibilities to rank such pairs. The
following definition is somehow inspired by the work in [12]: For (p, q) /∈ µ one
could define5 ∆µ(p, q) := |{r ∈ X | p ∧µ q ≤µ r ≤µ p ∨µ q}| − 1. This definition
extends the original definition of ∆µ and it can be used to specify the weights
(e.g., via αp,q ∝ ∆µ(p, q);βp,q ∝ ∆µ(p, q)) for the modified Tukey’s depth that
uses the whole attribute set M for the conceptual scaling.

5 Simulation

We derive an algorithm to sample from statistical models on the set of partial
orders on X .The algorithms is based on the acceptance-rejection method and
the idea of the algorithm is given in [13]. For a small number of elements, we can
directly compute all reflexive, transitive, and anti-symmetric orders. Thus, we
can easily draw a sample from one of the above distributions. Since the runtime
of the computation of all partial orderings grows with the number of elements
faster or equal to 2n

2/4 (see [20]), the direct computation is not feasible for larger
n. Therefore, we provide an algorithm based on the following structure: First, we
systematically draw a partial order and calculate the number of possible paths to

5 If the considered partial order does not build a complete lattice one could simply
compute the Dedekind-MacNeille completion beforehand.
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obtain this partial order. Finally, we compute the acceptance probability such
that we sample with probability of interest f . The algorithm uses that each
partial order is a subset of at least one linear order. A linear order has 1

2 (n−1)n
many pairs of the form (xi, xj) with i ̸= j and, in particular, if we randomly
delete some of these pairs, then, by computing the transitive hull, we obtain
a partial order. To obtain step 1, we first take a uniform sample of a linear
order and then randomly delete some pairs by a uniform variable on all subsets.
By computing all linear extensions, we can compute the probability that this
partial order was sampled. Finally, we adjust the acceptance probability so that
the sample ends up consisting of the probability function f we are interested in.
More precisely, the probability that a given order g is computed in step 1 is:

Palgo select(g) = |lext(g)| · 2|g|−|reduc(g)| ·
(
n!2n(n−1)/2

)−1

where reduc(g) is the transitive reduction6of g and n! · 2n(n−1)/2 is the number
of all paths to obtain a partial order by the procedure above. Since the number
of pairs of each linear order is the same, the probability that the partial order g
is sampled is identical for each linear order from the linear extension of g. Let
f be the probability function from which we want to draw a sample, then the
acceptance function is given by

acc(g) = f(g) ·
(
Palgo select(g) · n!2n(n−1)/2

)−1

. (3)

Algorithm 1: Sampling a partial order based on linear orders

Input: n: number of items;
f : probability function with the set of all partial orders as domain;
Result: partial order sampled according to the probability given by f .
repeat

# sampling the order
lin order ← sample uniformly a linear order;
del pairs ← sample uniformly a subset of {1, . . . , (n− 1)n/2};
partial order ← uniformly delete del pairs many pairs and compute
the transitive closure;

# compute the acceptance probability (thereby we have to compute the
transitive reduction)

accept prob ← computation of (3);

until random]0,1] ≤ accept prob;

Lemma 1. Algorithm 1 samples a partial order with probability function f on
all partial orders of G.

6 The transitive closure of a relation is the smallest transitive relation containing it,
and the transitive reduction is a minimal relation having the same transitive closure.
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The proof is analogously to the one given in [13]. Note we could use also a
modified version of the acceptance function: ãcc = c · acc with constant c ≥
maxg f(g)/Palgo select(g). This modified version must assure that for all partial
orders g, f(g) ≤ c · Palgo select(g) is true. Unfortunately, the computation of
all linear extensions is # P-complete (see [7]). Note that for some subsets of
all partial orders the running time of the computation of the linear extension is
smaller, i.e., if we consider only the set of trees (see [3]). Additionally, to improve
the runtime of the algorithm we generally could also use an approximation for the
number of all linear extensions |lext(g)|, for which e.g. [8] gives approximation
approaches.

6 Conclusion

In this paper, we developed statistical models for partial orders based on data
depth and formal concept analysis. We think that with this approach, opposed
to statistical models based on distances, we are in fact able to appropriately
incorporate the notion of unimodality of a statistical model for partial orders.
In particular, we think that a notion of unimodality based on concepts of lat-
tice theory is more appropriate compared to notions based on metrics or based
on the embedding of partial orders into a linear space. What is left open for
further research is the question how to exactly specify the decay function and
the weights within the approach that uses Tukey’s depth. A further analysis of
the newly developed enclosing depth, especially w.r.t. the question if this depth
function can be also applied if one does not know the mode beforehand, is also
of high interest. Additionally, the application of our approach to concrete data
situations is another important line of further research.
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12. Gäbel-Hökenschnieder, T., Schmidt, S.: Generalized metrics and their relevance
for FCA and closure operators. Concept Lattices and their Applications, 175–186
(2016)

13. Ganter, B.: Random extents and random closure systems. Concept Lattices and
their Applications, 309–318 (2011)

14. Ganter, B., Wille, R.: Formal concept analysis: Mathematical foundations. Springer
Science & Business Media (2012)

15. Jansen, C., Schollmeyer, G., Augustin, T.: Concepts for decision making under se-
vere uncertainty with partial ordinal and partial cardinal preferences. International
Journal of Approximate Reasoning, 98, 112–131 (2018)

16. Jansen, C., Blocher H., Augustin, T., Schollmeyer, G.: Information efficient learn-
ing of complexly structured preferences: Elicitation procedures and their application
to decision making under uncertainty. Revision under review for International Jour-
nal of Approximate Reasoning (minor revisions)

17. Jena, S., Lodi, A., Palmer, H., Sole, C.: A partially ranked choice model for large-
scale data-driven assortment optimization. Informs Journal on Optimization, 2(4),
297–319. (2020)

18. Kendall, M.: A new measure of rank correlation. Biometrika 30 (1/2), 81—93
(1938)

19. Kendall, M.: Discussion on symposium on ranking methods. Journal of the Royal
Statistical Society: Series B, 12, 153–162 (1950)

20. Kleitman, D., Rothschild, B.: The number of finite topologies. Proceedings of the
American Mathematical Society, 25(2), 276-–282 (1970)

21. Lebanon, G., Mao, Y.: Non-parametric modeling of partially ranked data. Journal
of Machine Learning Research, 9(10), 2401–2429 (2008)

22. Mangaraj, B., Aparajita, U.: Constructing a generalized model of the human de-
velopment index. Socio-Economic Planning Sciences, 70 (2020)

23. Mosler, K.: Depth statistics. Robustness and complex data structures. Becker, C.,
Fried, R., Kuhnt, S. (eds.), 17–34, Springer (2013)

24. Nakamura, K., Yano, K., Fumiyasu, K.: Learning partially ranked data based on
graph regularization. arXiv:1902.10963 (2019)

25. Schollmeyer, G.: Lower quantiles for complete lattices. Technical Report 207. De-
partment of Statistics. LMU Munich (2017)

26. Schollmeyer, G.: Application of lower quantiles for complete lattices to ranking
data: Analyzing outlyingness of preference orderings. Technical Report 208. Depart-
ment of Statistics. LMU Munich (2017)

27. Stewart, R.: Weak pseudo-rationalizability. Mathematical Social Sciences, 104, 23-
28 (2020)


