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Problem and motivation

We consider the basic model of finite Decision Theory:

• A = {a1, . . . , an} denotes a finite set of consequences.

• S = {s1, . . . , sm} denotes a finite set of states.

• G ⊆ AS = {X : S→ A} denotes a finite set of acts.

Goal: Find optimal acts via some choice function

ch : 2G → 2G with ch(D) ⊆ D for all D ∈ 2G

that best possibly utilizes the available information.

Classical approach: If both

I) preferences on A are characterized by a cardinal utility u : A→ R and

II) beliefs on S are characterized by a classical probability π,

then one commonly maximizes expected utility, i.e. defines

chu,π(D) :=
{
Y ∈ D : Eπ(u ◦ Y) ≥ Eπ(u ◦ X) for all X ∈ D

}
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Problem and motivation, continued

Obviously: If assumptions I) and/or II) are not satisfied, then chu,π(D) in gen-
eral won’t be well-defined.

Problem: In practice, this will often be the case.

(Requires strong axiomatic assumptions, e.g. the axioms of Savage)

Idea: Replace

• u by a set U of compatible utility functions on A and

• π by a setM of compatible probability measures on S

and generalize chu,π to a choice function chU,M utilizing exactly the informa-
tion encoded in U andM (and nothing more than that).

Details: There are several ways to proceed. We focus on the approach intro-
duced in Jansen, Schollmeyer & Augustin (2018, Int. J. Approx. Reason).

(briefly summarized on the next three slides)
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Modelling the set U

Notation: Binary relation R has strict part PR and indifference part IR.

Preference system & Consistency
Let A denote a set of consequences. Let further

• R1 ⊆ A× A be a binary relation on A

• R2 ⊆ R1 × R1 be a binary relation on R1

The triplet A = [A,R1,R2] is called a preference system on A. We call A
consistent if there exists u : A→ [0, 1] such that for all a,b, c,d ∈ A:

• (a,b) ∈ R1 ⇒ u(a) ≥ u(b) (with = iff ∈ IR1 ).

• ((a,b), (c,d)) ∈ R2 ⇒ u(a)− u(b) ≥ u(c)− u(d) (with = iff ∈ IR2 ).

The set of all representations u of A is denoted by UA.

Interpretation of the components of A:

• (a,b) ∈ R1: “a is at least as desirable as b”

• ((a,b), (c,d)) ∈ R2: “exchanging b by a is at least as desirable as d by c” 3



Modelling the setM

The agent’s uncertainty among the elements of S is characterized by a poly-
hedral credal set of probability measures of the form

M =
{
π ∈ P : bℓ ≤ Eπ(fℓ) ≤ bℓ for ℓ = 1, . . . , r

}
where P denotes the set of all probability measures on (S, 2S) and

• f1, . . . , fr : S→ R are real-valued mappings and

• bℓ ≤ bℓ, ℓ = 1, . . . , r, are lower and upper expectation bounds.

⇒ Very general uncertainty model capturing special cases such as

• Classical probability

• Interval probability

• Lower previsions

• Linear partial information

• Contamination models
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Decision making based on UA andM

Jansen, Schollmeyer & Augustin (2018, Int. J. Approx. Reason) proposes several
choice functions based on the sets UA and M and provide linear program-
ming based algorithms for their evaluation.

We focus on one specific choice function, namely chA,M : 2G → 2G with

chA,M(D) :=
{
Y ∈ D : ∄X ∈ D s.t. Eπ(u◦X) ≥ Eπ(u◦Y) for all u ∈ UA, π ∈ M

}

The choice function chA,M ...

• ... selects acts that are not expectation dominated by any other act for
arbitrary compatible pairs (u, π) ∈ UA ×M.

• ... can be evaluated by using linear programming theory.

• ... can be thought of as a generalization of first order stochastic domi-
nance to partially cardinal and partially ordinal scaled spaces.
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Main focus today: Eliciting A∗ = [A,R∗
1 ,R∗

2] efficiently

Goal: Elicit an agent’s true preference system

A∗ = [A,R∗
1 ,R∗

2 ]

by asking as few as possible ranking questions only about R∗
1 .

Two different elicitation procedures:

• Procedure 1: For every presented pair {ai, aj} with (ai, aj) ∈ R∗
1 , we mea-

sure the agent’s consideration time tij > 0 and use these times for con-
structing R2 (hopefully matching R∗

2 ).

• Procedure 2: For every presented pair {ai, aj} with (ai, aj) ∈ R∗
1 , we col-

lect a label of preference strength and utilize the collected labels for
constructing R2 (hopefully matching R∗

2 ).

Question: Under which conditions do Procedures 1 and 2 produce the agent’s
true preference system A∗ = [A,R∗

1 ,R∗
2 ]?
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Procedure 1: Time elicitation

Time elicitation
Input: A = {a1, . . . , an}; R1 = ∅; C = ∅;
Output: A = [A,R1,R2];
Procedure: Present all pairs {ai, aj} from A{2} := {{a,b} : a ̸= b ∈ A}.

i) Agent judges ai and aj incomparable. Set C = C ∪ {(aj, ai), (ai, aj)} and
tij = tji = 0.

ii) Agent ranks ai strictly better than aj. Set R1 = R1 ∪ {(ai, aj)} and
measure consideration time tij > 0. Set tji = 0.

iii) Agent ranks aj strictly better than ai. Set R1 = R1 ∪ {(aj, ai)} and
measure consideration time tji > 0. Set tij = 0.

iv) Agent is indifferent between aj and ai. Set R1 = R1 ∪ {(ai, aj), (aj, ai)}
and tij = tji = c∞ > max{tpq : (ap, aq) ∈ PR∗1 }.

Define R2 by setting ((ai, aj), (ak, al)) ∈ R2 :⇔ tkl − tij ≥ 0 ∧ tij > 0.
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Procedure 1: Assumptions

Assumption 1
For (ai, aj), (ak, al) ∈ R∗

1 the following holds:

i) tkl > tij > 0 if and only if ((ai, aj), (ak, al)) ∈ PR∗2
ii) tkl = tij > 0 if and only if ((ai, aj), (ak, al)) ∈ IR∗2
iii) tij = tji = c∞ if and only if (ai, aj) ∈ IR∗1

Assumption 2
For (ai, aj), (aj, ak) ∈ PR∗1 we have

1
tij
+ 1

tjk
= 1

tik
, whenever (ai, ak) ∈ PR∗1 .

Assumption 3
For (ai, aj) ∈ IR∗1 we have

i) tki = tkj whenever (ak, ai), (ak, aj) ∈ PR∗1 and

ii) tik = tjk whenever (ai, ak), (aj, ak) ∈ PR∗1 .
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Procedure 1: Findings

Proposition 1
Under Assumption 1, time elicitation produces the agents’s true preference
system A∗ = [A,R∗

1 ,R∗
2 ].

Proposition 2
Under Assumptions 1, 2 and 3 the true preference system A∗ = [A,R∗

1 ,R∗
2 ] is

consistent if and only if R∗
1 is transitive.

Procedure 1∗: Suppose that after k steps of Procedure 1 we have elicited Rk1
and Ck. Sample the next pair to present from

A{2} \
{
{a,b} : (a,b) ∈ HRk1 ∨ (b, a) ∈ HRk1 ∨ (a,b) ∈ Ck

}
and compute the missing times by using Assumption 2.

Proposition 3
Under Assumptions 1, 2 and 3, Procedure 1∗ terminates in A∗ if and only if
R∗
1 is transitive. By Proposition 2 we know A∗ is consistent in this case. 9



Procedure 2: Label elicitation

Setup: Agent assigns a label ℓijr ∈ Lr := {n, c, 0, 1, . . . , r} to every (ai, aj) by
some labelling function ℓr : A× A→ Lr:

n : non-comparable
c : strict preference of unknown strength
0 : indifferent
1, . . . , r : strict preference of increasing strength

Label elicitation
Input: A = {a1, . . . , an}; R1 = ∅; number of labels r;
Output: A = [A,R1,R2];
Procedure: Present all pairs (ai, aj) ∈ A× A.

i) If ℓijr ∈ Lr \ {n, 0}, set R1 = R1 ∪ {(ai, aj)}.

ii) If ℓijr = 0, set R1 = R1 ∪ {(ai, aj), (aj, ai)}.

iii) If ℓijr = n, set R1 = R1.

Define R2 by setting ((ai, aj), (ak, al)) ∈ R2 :⇔ ℓijr > ℓklr ∨ ℓijr = ℓklr = 0
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Procedure 2: Assumptions

Assumption 4

i) (ai, aj) ∈ IR∗1 ⇔ ℓijr = 0

ii) (ai, aj) ∈ PR∗1 ⇔ ℓijr ∈ Lr \ {n, 0} ∧ ℓjir = n

iii) (ai, aj) ∈ CR∗1 ⇔ ℓijr = ℓjir = n

Assumption 5
For all (ai, aj), (ak, al) ∈ R∗

1 the following holds:

i) ℓijr > ℓklr ⇒ ((ai, aj), (ak, al)) ∈ PR∗2
ii) ℓijr = ℓklr = 0 ⇒ ((ai, aj), (ak, al)) ∈ IR∗2
iii) ℓijr = c ∨ ℓklr = c ⇔ ((ai, aj), (ak, al)) ∈ CR∗2

Assumption 6
For all ((ai, aj), (ak, al)) ∈ PR∗2 the statement ℓ

ij
r = ℓklr = x /∈ {0,n, c} implies

that {1, . . . , r} ⊂ ℓr
(
A× A

)
. 11



Procedure 2: Findings

Proposition 4
The following two statements hold true:

i) If, for some r ∈ N, ℓr : A×A→ Lr satisfies Assumptions 4 and 5, then Pro-
cedure 2 produces a sub-system of the decision maker’s true preference
system A∗. Particularly, the procedure produces a consistent preference
system whenever A∗ is consistent.

ii) There exists r0 ∈ N such that if ℓr0 : A × A → Lr0 satisfies Assump-
tions 4, 5 and 6, then Procedure 2 produces the true A∗.

Challenge: Although Prop. 4 ii) guarantees that Procedure 2 reproduces the
agent’s true preference system for some number of labels r∗, labelling in ac-
cordance with the assumptions might be too demanding if r∗ is large.

Solution: Use a relatively small number of labels and restart elicitation on
those pairs with equal label. Stop as soon as you know that equal labels
originate from indifference.
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Procedure 2: Hierarchical version

Graphical intuition:
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Hierarchical version: Findings

For the hierarchical version of label elicitation to work, we need to assume
that the agent is able to adapt the labelling function to arbitrary subsets.

Formally, we arrive at:

Assumption 7
For every N ⊆ A× A the labels on the restricted set of pairs N are given
w.r.t. a labelling function ℓ(N,r) : N→ Lr satisfying Assumptions 4, 5 and 6.

This indeed allows the following Proposition:

Proposition 5
Let Assumption 7 hold true. For n = |A| consequences and r ≥ 2 labels, the
hierarchical version of Procedure 2 terminates in A∗ after at most
max{1, ⌈ n2−r

r−1 ⌉+ 1} elicitation rounds.

14



Application to decision making under uncertainty

We now return to decision under uncertainty:

• Consider the decision problem G under uncertainty modelM.

• Suppose A∗ is elicited by either Procedure 1 or 2 (or some variant).

• Let A1,A2, . . . be the preference system after elicitation step 1, 2, . . . .

Proposition 6
Let the assumptions of the used procedure be satisfied. Then, for any k :

X ∈ chAk,M(G) ⇒ X ∈ chA∗,M(G)

Why is this good?

If an act is optimal w.r.t. the preference system Ak elicited so far, we can ter-
minate elicitation and conclude that it is optimal also w.r.t. the agent’s true
preference system A∗.
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A small example

• Consider the following decision problem:

s1 s2 s3 s4

X1 a8 a5 a2 a3
X2 a7 a6 a4 a1

Decision problem

a1

a2a3

a5

a6

a8

a7

a4

X2

X1

b

b s1

s2

s3

s4 s1

s2

s3

s4

Hasse diagram of R∗1

• The relation R∗
2 is given as the transitive hull of (where eij := (ai, aj)):

e31PR∗2 e52PR∗2 e74PR∗2 e21IR∗2 e64IR∗2 e42IR∗2 e86PR∗2 e87PR∗2 e53PR∗2 e75PR∗2 e65PR∗2 e43

• LetM = {π}, where π is the uniform distribution on S. 16



A small example, continued

Assume elicitation is done by using Procedure 2 with ℓ5 : A× A→ L5.

Moreover, assume the first four elicitation steps look as follows:

Elicitation step Presented pair Label of the pair

1 (a8, a7) ℓ875 = 2
2 (a6, a5) ℓ655 = 1
3 (a3, a1) ℓ315 = 3
4 (a4, a2) ℓ425 = 2

Then, for every u ∈ UA4 we can go on computing (where ui := u(ai)):

4 ·(Eπ(u◦X1)−Eπ(u◦X2)) = (u8 − u7)− (u6 − u5)︸ ︷︷ ︸
>0, since (e87,e65)∈PR2

+(u3 − u1) + (u4 − u2)︸ ︷︷ ︸
>0, since (e31,e42)∈PR2

> 0

Thus X1 ∈ chA4,M(G). Thus X1 ∈ chA∗,M(G) by Prop. 6.

!! We concluded that X1 is optimal by asking four simple ranking questions. !!
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Ongoing and future research

There are several promising perspectives for future research:

• Finding data-driven methods for presenting the most promising pair of
consequences in each elicitation step. (Learn from previous rounds.)

• Develop methods that flexibly mix hierarchical and non-hierarchical
procedures to speed up elicitation.

• Investigate stopping properties of the procedures for choice functions
other than chA,M.
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