Methods for eliciting preference systems with applications to
 decision making under severe uncertainty

Christoph Jansen, Georg Schollmeyer \& Thomas Augustin Department of Statistics, LMU Munich
IFORS 2021 Virtual

Problem and motivation

We consider the basic model of finite Decision Theory:

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$
- $S=\left\{S_{1}, \ldots, S_{m}\right\}$
- $\mathcal{G} \subseteq A^{S}=\{X: S \rightarrow A\}$ denotes a finite set of consequences. denotes a finite set of states. denotes a finite set of acts.

Goal: Find optimal acts via some choice function

$$
\text { ch : } 2^{\mathcal{G}} \rightarrow 2^{\mathcal{G}} \text { with } \operatorname{ch}(\mathcal{D}) \subseteq \mathcal{D} \text { for all } \mathcal{D} \in 2^{\mathcal{G}}
$$

that best possibly utilizes the available information.
Classical approach: If both
I) preferences on A are characterized by a cardinal utility $u: A \rightarrow \mathbb{R}$ and
II) beliefs on S are characterized by a classical probability π,
then one commonly maximizes expected utility, i.e. defines

$$
\operatorname{ch}_{u, \pi}(\mathcal{D}):=\left\{Y \in \mathcal{D}: \mathbb{E}_{\pi}(u \circ Y) \geq \mathbb{E}_{\pi}(u \circ X) \text { for all } X \in \mathcal{D}\right\}
$$

Problem and motivation, continued

Obviously: If assumptions I) and/or II) are not satisfied, then $\operatorname{ch}_{u, \pi}(\mathcal{D})$ in general won't be well-defined.

Problem: In practice, this will often be the case.
(Requires strong axiomatic assumptions, e.g. the axioms of Savage)
Idea: Replace

- u by a set \mathcal{U} of compatible utility functions on A and
- π by a set \mathcal{M} of compatible probability measures on S
and generalize $\mathrm{ch}_{\mathcal{U}, \boldsymbol{\pi}}$ to a choice function $\mathrm{ch}_{\mathcal{U}, \mathcal{M}}$ utilizing exactly the information encoded in \mathcal{U} and \mathcal{M} (and nothing more than that).

Details: There are several ways to proceed. We focus on the approach introduced in Jansen, Schollmeyer \& Augustin (2018, Int. J. Approx. Reason). (briefly summarized on the next three slides)

Modelling the set \mathcal{U}

Notation: Binary relation R has strict part P_{R} and indifference part I_{R}.

Preference system \& Consistency

Let A denote a set of consequences. Let further

- $R_{1} \subseteq A \times A$ be a binary relation on A
- $R_{2} \subseteq R_{1} \times R_{1}$ be a binary relation on R_{1}

The triplet $\mathcal{A}=\left[A, R_{1}, R_{2}\right]$ is called a preference system on A. We call \mathcal{A} consistent if there exists $u: A \rightarrow[0,1]$ such that for all $a, b, c, d \in A$:

- $(a, b) \in R_{1} \Rightarrow u(a) \geq u(b) \quad$ (with $=$ iff $\left.\in I_{R_{1}}\right)$.
- $((a, b),(c, d)) \in R_{2} \Rightarrow u(a)-u(b) \geq u(c)-u(d) \quad$ (with $=$ iff $\left.\in I_{R_{2}}\right)$.

The set of all representations u of \mathcal{A} is denoted by $\mathcal{U}_{\mathcal{A}}$.
Interpretation of the components of \mathcal{A} :

- $(a, b) \in R_{1}$: "a is at least as desirable as b"
- $((a, b),(c, d)) \in R_{2}$: "exchanging b by a is at least as desirable as d by c "

Modelling the set \mathcal{M}

The agent's uncertainty among the elements of S is characterized by a polyhedral credal set of probability measures of the form

$$
\mathcal{M}=\left\{\pi \in \mathcal{P}: \underline{b}_{\ell} \leq \mathbb{E}_{\pi}\left(f_{\ell}\right) \leq \bar{b}_{\ell} \text { for } \ell=1, \ldots, r\right\}
$$

where \mathcal{P} denotes the set of all probability measures on $\left(S, 2^{S}\right)$ and

- $f_{1}, \ldots, f_{r}: S \rightarrow \mathbb{R}$ are real-valued mappings and
- $\underline{b}_{\ell} \leq \bar{b}_{\ell}, \ell=1, \ldots, r$, are lower and upper expectation bounds.
\Rightarrow Very general uncertainty model capturing special cases such as
- Classical probability
- Interval probability
- Lower previsions
- Linear partial information
- Contamination models

Decision making based on $\mathcal{U}_{\mathcal{A}}$ and \mathcal{M}

Jansen, Schollmeyer \& Augustin (2018, Int. J. Approx. Reason) proposes several choice functions based on the sets $\mathcal{U}_{\mathcal{A}}$ and \mathcal{M} and provide linear programming based algorithms for their evaluation.

We focus on one specific choice function, namely $\mathrm{ch}_{\mathcal{A}, \mathcal{M}}: 2^{\mathcal{G}} \rightarrow 2^{\mathcal{G}}$ with $\operatorname{ch}_{\mathcal{A}, \mathcal{M}}(\mathcal{D}):=\left\{Y \in \mathcal{D}: \nexists X \in \mathcal{D}\right.$ s.t. $\mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y)$ for all $\left.u \in \mathcal{U}_{\mathcal{A}}, \pi \in \mathcal{M}\right\}$

The choice function $\mathrm{ch}_{\mathcal{A}, \mathcal{M}} \ldots$

- ... selects acts that are not expectation dominated by any other act for arbitrary compatible pairs $(u, \pi) \in \mathcal{U}_{\mathcal{A}} \times \mathcal{M}$.
- ... can be evaluated by using linear programming theory.
- ... can be thought of as a generalization of first order stochastic dominance to partially cardinal and partially ordinal scaled spaces.

Main focus today: Eliciting $\mathcal{A}^{*}=\left[A, R_{1}^{*}, R_{2}^{*}\right]$ efficiently

Goal: Elicit an agent's true preference system

$$
\mathcal{A}^{*}=\left[A, R_{1}^{*}, R_{2}^{*}\right]
$$

by asking as few as possible ranking questions only about R_{1}^{*}.
Two different elicitation procedures:

- Procedure 1: For every presented pair $\left\{a_{i}, a_{j}\right\}$ with $\left(a_{i}, a_{j}\right) \in R_{1}^{*}$, we measure the agent's consideration time $t_{i j}>0$ and use these times for constructing R_{2} (hopefully matching R_{2}^{*}).
- Procedure 2: For every presented pair $\left\{a_{i}, a_{j}\right\}$ with $\left(a_{i}, a_{j}\right) \in R_{1}^{*}$, we collect a label of preference strength and utilize the collected labels for constructing R_{2} (hopefully matching R_{2}^{*}).

Question: Under which conditions do Procedures 1 and 2 produce the agent's true preference system $\mathcal{A}^{*}=\left[A, R_{1}^{*}, R_{2}^{*}\right]$?

Procedure 1: Time elicitation

Time elicitation

Input: $A=\left\{a_{1}, \ldots, a_{n}\right\} ; R_{1}=\emptyset ; C=\emptyset$;
Output: $\mathcal{A}=\left[A, R_{1}, R_{2}\right]$;
Procedure: Present all pairs $\left\{a_{i}, a_{j}\right\}$ from $A_{\{2\}}:=\{\{a, b\}: a \neq b \in A\}$.
i) Agent judges a_{i} and a_{j} incomparable. Set $C=C \cup\left\{\left(a_{j}, a_{i}\right),\left(a_{i}, a_{j}\right)\right\}$ and $t_{i j}=t_{j i}=0$.
ii) Agent ranks a_{i} strictly better than a_{j}. Set $R_{1}=R_{1} \cup\left\{\left(a_{i}, a_{j}\right)\right\}$ and measure consideration time $t_{i j}>0$. Set $t_{j i}=0$.
iii) Agent ranks a_{j} strictly better than a_{i}. Set $R_{1}=R_{1} \cup\left\{\left(a_{j}, a_{i}\right)\right\}$ and measure consideration time $t_{j i}>0$. Set $t_{i j}=0$.
iv) Agent is indifferent between a_{j} and a_{i}. Set $R_{1}=R_{1} \cup\left\{\left(a_{i}, a_{j}\right),\left(a_{j}, a_{i}\right)\right\}$ and $t_{i j}=t_{j i}=c_{\infty}>\max \left\{t_{p q}:\left(a_{p}, a_{q}\right) \in P_{R_{1}^{*}}\right\}$.

Define R_{2} by setting $\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in R_{2} \quad: \Leftrightarrow \quad t_{k l}-t_{i j} \geq 0 \wedge t_{i j}>0$.

Procedure 1: Assumptions

Assumption 1

For $\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right) \in R_{1}^{*}$ the following holds:
i) $t_{k l}>t_{i j}>0$ if and only if $\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in P_{R_{2}^{*}}$
ii) $t_{k l}=t_{i j}>0$ if and only if $\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in I_{R_{2}^{*}}$
iii) $t_{i j}=t_{j i}=c_{\infty}$ if and only if $\left(a_{i}, a_{j}\right) \in I_{R_{1}^{*}}$

Assumption 2

For $\left(a_{i}, a_{j}\right),\left(a_{j}, a_{k}\right) \in P_{R_{1}^{*}}$ we have $\frac{1}{t_{i j}}+\frac{1}{t_{j k}}=\frac{1}{t_{i k}}$, whenever $\left(a_{i}, a_{k}\right) \in P_{R_{1}^{*}}$.

Assumption 3

For $\left(a_{i}, a_{j}\right) \in I_{R_{1}^{*}}$ we have
i) $t_{k i}=t_{k j}$ whenever $\left(a_{k}, a_{i}\right),\left(a_{k}, a_{j}\right) \in P_{R_{1}^{*}}$ and
ii) $t_{i k}=t_{j k}$ whenever $\left(a_{i}, a_{k}\right),\left(a_{j}, a_{k}\right) \in P_{R_{1}^{*}}$.

Procedure 1: Findings

Proposition 1

Under Assumption 1, time elicitation produces the agents's true preference system $\mathcal{A}^{*}=\left[A, R_{1}^{*}, R_{2}^{*}\right]$.

Proposition 2

Under Assumptions 1, 2 and 3 the true preference system $\mathcal{A}^{*}=\left[A, R_{1}^{*}, R_{2}^{*}\right]$ is consistent if and only if R_{1}^{*} is transitive.

Procedure 1^{*} : Suppose that after k steps of Procedure 1 we have elicited R_{1}^{k} and C^{k}. Sample the next pair to present from

$$
A_{\{2\}} \backslash\left\{\{a, b\}:(a, b) \in H_{R_{1}^{k}} \vee(b, a) \in H_{R_{1}^{k}} \vee(a, b) \in C^{k}\right\}
$$

and compute the missing times by using Assumption 2.

Proposition 3

Under Assumptions 1, 2 and 3, Procedure 1^{*} terminates in \mathcal{A}^{*} if and only if R_{1}^{*} is transitive. By Proposition 2 we know \mathcal{A}^{*} is consistent in this case.

Procedure 2: Label elicitation

Setup: Agent assigns a label $\ell_{r}^{i j} \in \mathcal{L}_{r}:=\{\mathbf{n}, \mathbf{c}, 0,1, \ldots, r\}$ to every $\left(a_{i}, a_{j}\right)$ by some labelling function $\ell_{r}: A \times A \rightarrow \mathcal{L}_{r}$:

$\mathrm{n}:$	non-comparable
$\mathrm{c}:$	strict preference of unknown strength
$0:$	indifferent
$1, \ldots, r:$	strict preference of increasing strength

Label elicitation

Input: $A=\left\{a_{1}, \ldots, a_{n}\right\} ; R_{1}=\emptyset$; number of labels r;
Output: $\mathcal{A}=\left[A, R_{1}, R_{2}\right]$;
Procedure: Present all pairs $\left(a_{i}, a_{j}\right) \in A \times A$.
i) If $\ell_{r}^{i j} \in \mathcal{L}_{r} \backslash\{\mathrm{n}, 0\}$, set $R_{1}=R_{1} \cup\left\{\left(a_{i}, a_{j}\right)\right\}$.
ii) If $\ell_{r}^{i j}=0$, set $R_{1}=R_{1} \cup\left\{\left(a_{i}, a_{j}\right),\left(a_{j}, a_{i}\right)\right\}$.
iii) If $\ell_{r}^{i j}=\mathrm{n}$, set $R_{1}=R_{1}$.

Define R_{2} by setting $\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in R_{2} \quad: \Leftrightarrow \quad \ell_{r}^{i j}>\ell_{r}^{k l} \quad \vee \quad \ell_{r}^{i j}=l_{r}^{k l}=0$

Procedure 2: Assumptions

Assumption 4

i) $\left(a_{i}, a_{j}\right) \in I_{R_{T}^{*}} \Leftrightarrow \ell_{r}^{i j}=0$
ii) $\left(a_{i}, a_{j}\right) \in P_{R_{1}^{*}} \Leftrightarrow \ell_{r}^{i j} \in \mathcal{L}_{r} \backslash\{\mathrm{n}, 0\} \wedge \ell_{r}^{\mathrm{j}}=\mathrm{n}$
iii) $\left(a_{i}, a_{j}\right) \in C_{R_{1}^{*}} \Leftrightarrow \ell_{r}^{i j}=\ell_{r}^{j i}=n$

Assumption 5

For all $\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right) \in R_{1}^{*}$ the following holds:
i) $\ell_{r}^{i j}>\ell_{r}^{k l} \Rightarrow \quad\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in P_{R_{2}^{*}}$
ii) $\ell_{r}^{i j}=l_{r}^{k l}=0 \Rightarrow\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in I_{R_{2}^{*}}$
iii) $\ell_{r}^{i j}=\mathrm{c} \vee \ell_{r}^{k l}=\mathrm{c} \Leftrightarrow\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in C_{R_{2}^{*}}$

Assumption 6

For all $\left(\left(a_{i}, a_{j}\right),\left(a_{k}, a_{l}\right)\right) \in P_{R_{2}^{*}}$ the statement $\ell_{r}^{i j}=\ell_{r}^{k l}=x \notin\{0, \mathrm{n}, \mathrm{c}\}$ implies that $\{1, \ldots, r\} \subset \ell_{r}(A \times A)$.

Procedure 2: Findings

Proposition 4

The following two statements hold true:
i) If, for some $r \in \mathbb{N}, \ell_{r}: A \times A \rightarrow \mathcal{L}_{r}$ satisfies Assumptions 4 and 5 , then Procedure 2 produces a sub-system of the decision maker's true preference system \mathcal{A}^{*}. Particularly, the procedure produces a consistent preference system whenever \mathcal{A}^{*} is consistent.
ii) There exists $r_{0} \in \mathbb{N}$ such that if $\ell_{r_{0}}: A \times A \rightarrow \mathcal{L}_{r_{0}}$ satisfies Assumptions 4,5 and 6 , then Procedure 2 produces the true \mathcal{A}^{*}.

Challenge: Although Prop. 4 ii) guarantees that Procedure 2 reproduces the agent's true preference system for some number of labels r^{*}, labelling in accordance with the assumptions might be too demanding if r^{*} is large.

Solution: Use a relatively small number of labels and restart elicitation on those pairs with equal label. Stop as soon as you know that equal labels originate from indifference.

Procedure 2: Hierarchical version

Graphical intuition:

Hierarchical version: Findings

For the hierarchical version of label elicitation to work, we need to assume that the agent is able to adapt the labelling function to arbitrary subsets.

Formally, we arrive at:

Assumption 7

For every $N \subseteq A \times A$ the labels on the restricted set of pairs N are given w.r.t. a labelling function $\ell_{(N, r)}: N \rightarrow \mathcal{L}_{r}$ satisfying Assumptions 4, 5 and 6.

This indeed allows the following Proposition:

Proposition 5

Let Assumption 7 hold true. For $n=|A|$ consequences and $r \geq 2$ labels, the hierarchical version of Procedure 2 terminates in \mathcal{A}^{*} after at most $\max \left\{1,\left\lceil\frac{n^{2}-r}{r-1}\right\rceil+1\right\}$ elicitation rounds.

Application to decision making under uncertainty

We now return to decision under uncertainty:

- Consider the decision problem \mathcal{G} under uncertainty model \mathcal{M}.
- Suppose \mathcal{A}^{*} is elicited by either Procedure 1 or 2 (or some variant).
- Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots$ be the preference system after elicitation step $1,2, \ldots$.

Proposition 6

Let the assumptions of the used procedure be satisfied. Then, for any k :

$$
X \in \operatorname{ch}_{\mathcal{A}_{k}, \mathcal{M}}(\mathcal{G}) \Rightarrow X \in \operatorname{ch}_{\mathcal{A}^{*}, \mathcal{M}}(\mathcal{G})
$$

Why is this good?
If an act is optimal w.r.t. the preference system \mathcal{A}_{k} elicited so far, we can terminate elicitation and conclude that it is optimal also w.r.t. the agent's true preference system \mathcal{A}^{*}.

A small example

- Consider the following decision problem:

	s_{1}	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$
X_{1}	a_{8}	a_{5}	a_{2}	a_{3}
X_{2}	a_{7}	a_{6}	a_{4}	a_{1}

- The relation R_{2}^{*} is given as the transitive hull of (where $e_{i j}:=\left(a_{i}, a_{j}\right)$):

$$
e_{31} P_{R_{2}^{*}} e_{52} P_{R_{2}^{*}} e_{74} P_{R_{2}^{*}} e_{21} I_{R_{2}^{*}} e_{64} I_{R_{2}^{*}} e_{42} I_{R_{2}^{*}} e_{86} P_{R_{2}^{*}} e_{87} P_{R_{2}^{*}} e_{53} P_{R_{2}^{*}} e_{75} P_{R_{2}^{*}} e_{65} P_{R_{2}^{*}} e_{43}
$$

- Let $\mathcal{M}=\{\pi\}$, where π is the uniform distribution on S.

A small example, continued

Assume elicitation is done by using Procedure 2 with $\ell_{5}: A \times A \rightarrow \mathcal{L}_{5}$.
Moreover, assume the first four elicitation steps look as follows:

Elicitation step	Presented pair	Label of the pair
1	$\left(a_{8}, a_{7}\right)$	$\ell_{5}^{87}=2$
2	$\left(a_{6}, a_{5}\right)$	$\ell_{5}^{65}=1$
3	$\left(a_{3}, a_{1}\right)$	$\ell_{5}^{31}=3$
4	$\left(a_{4}, a_{2}\right)$	$\ell_{5}^{42}=2$

Then, for every $u \in \mathcal{U}_{\mathcal{A}_{4}}$ we can go on computing (where $u_{i}:=u\left(a_{i}\right)$):
$4 \cdot\left(\mathbb{E}_{\pi}\left(u \circ X_{1}\right)-\mathbb{E}_{\pi}\left(u \circ X_{2}\right)\right)=\underbrace{\left(u_{8}-u_{7}\right)-\left(u_{6}-u_{5}\right)}_{>0 \text {, since }\left(e_{87}, e_{65}\right) \in P_{R_{2}}}+\underbrace{\left(u_{3}-u_{1}\right)+\left(u_{4}-u_{2}\right)}_{>0 \text {, since }\left(e_{31}, e_{42}\right) \in P_{R_{2}}}>0$
Thus $X_{1} \in \operatorname{ch}_{\mathcal{A}_{4}, \mathcal{M}}(\mathcal{G})$. Thus $X_{1} \in \operatorname{ch}_{\mathcal{A}^{*}, \mathcal{M}}(\mathcal{G})$ by Prop. 6.
!! We concluded that X_{1} is optimal by asking four simple ranking questions. !!

Ongoing and future research

There are several promising perspectives for future research:

- Finding data-driven methods for presenting the most promising pair of consequences in each elicitation step. (Learn from previous rounds.)
- Develop methods that flexibly mix hierarchical and non-hierarchical procedures to speed up elicitation.
- Investigate stopping properties of the procedures for choice functions other $\operatorname{than} \mathrm{ch}_{\mathcal{A}, \mathcal{M}}$.

