Methods for eliciting preference systems with applications to decision making under severe uncertainty

Christoph Jansen, Georg Schollmeyer & Thomas Augustin Department of Statistics, LMU Munich IFORS 2021 Virtual

Problem and motivation

We consider the basic model of finite Decision Theory:

- $A = \{a_1, \dots, a_n\}$ denotes a finite set of *consequences*.
- $S = \{s_1, \dots, s_m\}$ denotes a finite set of states.
- $\mathcal{G} \subseteq A^{S} = \{X : S \to A\}$ denotes a finite set of *acts*.

Goal: Find optimal acts via some choice function

$$ch: 2^{\mathcal{G}} \to 2^{\mathcal{G}}$$
 with $ch(\mathcal{D}) \subseteq \mathcal{D}$ for all $\mathcal{D} \in 2^{\mathcal{G}}$

that best possibly utilizes the available information.

Classical approach: If both

- I) preferences on A are characterized by a cardinal utility $u : A \rightarrow \mathbb{R}$ and
- II) beliefs on S are characterized by a classical probability π ,

then one commonly maximizes expected utility, i.e. defines

$$ch_{u,\pi}(\mathcal{D}) := \left\{ Y \in \mathcal{D} : \mathbb{E}_{\pi}(u \circ Y) \geq \mathbb{E}_{\pi}(u \circ X) \text{ for all } X \in \mathcal{D} \right\}$$

Problem and motivation, continued

Obviously: If assumptions I) and/or II) are not satisfied, then $ch_{u,\pi}(\mathcal{D})$ in general won't be well-defined.

Problem: In practice, this will often be the case.

(Requires strong axiomatic assumptions, e.g. the axioms of Savage)

Idea: Replace

- $\cdot \, u$ by a set \mathcal{U} of compatible utility functions on A and
- + π by a set ${\mathcal M}$ of compatible probability measures on S

and generalize $ch_{u,\pi}$ to a choice function $ch_{\mathcal{U},\mathcal{M}}$ utilizing exactly the information encoded in \mathcal{U} and \mathcal{M} (and *nothing more* than that).

Details: There are several ways to proceed. We focus on the approach introduced in Jansen, Schollmeyer & Augustin (2018, Int. J. Approx. Reason).

(briefly summarized on the next three slides)

Modelling the set $\ensuremath{\mathcal{U}}$

Notation: Binary relation R has strict part P_R and indifference part I_R .

Preference system & Consistency

Let A denote a set of consequences. Let further

- $R_1 \subseteq A \times A$ be a binary relation on A
- $R_2 \subseteq R_1 \times R_1$ be a binary relation on R_1

The triplet $\mathcal{A} = [A, R_1, R_2]$ is called a *preference system* on A. We call \mathcal{A} *consistent* if there exists $u : A \rightarrow [0, 1]$ such that for all $a, b, c, d \in A$:

•
$$(a,b) \in R_1 \Rightarrow u(a) \ge u(b)$$
 (with $= iff \in I_{R_1}$).

• $((a,b),(c,d)) \in R_2 \Rightarrow u(a) - u(b) \ge u(c) - u(d)$ (with $= iff \in I_{R_2}$).

The set of all representations u of \mathcal{A} is denoted by $\mathcal{U}_{\mathcal{A}}$.

Interpretation of the components of \mathcal{A} :

- · (a, b) \in R₁: "a is at least as desirable as b"
- $((a,b),(c,d)) \in R_2$: "exchanging b by a is at least as desirable as d by c" 3

Modelling the set $\ensuremath{\mathcal{M}}$

The agent's uncertainty among the elements of S is characterized by a polyhedral *credal set* of probability measures of the form

$$\mathcal{M} = \left\{ \pi \in \mathcal{P} : \underline{b}_{\ell} \leq \mathbb{E}_{\pi}(f_{\ell}) \leq \overline{b}_{\ell} \text{ for } \ell = 1, \dots, r \right\}$$

where \mathcal{P} denotes the set of all probability measures on (S, 2^S) and

- $f_1, \ldots, f_r : S \to \mathbb{R}$ are real-valued mappings and
- $\underline{b}_{\ell} \leq \overline{b}_{\ell}$, $\ell = 1, ..., r$, are lower and upper expectation bounds.
- \Rightarrow Very general uncertainty model *capturing special cases* such as
 - Classical probability
 - Interval probability
 - Lower previsions
 - Linear partial information
 - Contamination models

Decision making based on $\mathcal{U}_{\!\mathcal{A}}$ and \mathcal{M}

Jansen, Schollmeyer & Augustin (2018, Int. J. Approx. Reason) proposes several choice functions based on the sets $\mathcal{U}_{\mathcal{A}}$ and \mathcal{M} and provide linear programming based algorithms for their evaluation.

We focus on one specific choice function, namely $ch_{\mathcal{A},\mathcal{M}}: 2^{\mathcal{G}} \to 2^{\mathcal{G}}$ with

 $ch_{\mathcal{A},\mathcal{M}}(\mathcal{D}) := \Big\{ Y \in \mathcal{D} : \nexists X \in \mathcal{D} \text{ s.t. } \mathbb{E}_{\pi}(u \circ X) \geq \mathbb{E}_{\pi}(u \circ Y) \text{ for all } u \in \mathcal{U}_{\mathcal{A}}, \pi \in \mathcal{M} \Big\}$

The choice function $ch_{\mathcal{A},\mathcal{M}}$...

- ... selects acts that are not expectation dominated by any other act for arbitrary compatible pairs $(u, \pi) \in U_A \times M$.
- ... can be evaluated by using *linear programming* theory.
- ... can be thought of as a generalization of *first order stochastic dominance* to partially cardinal and partially ordinal scaled spaces.

Main focus today: Eliciting $A^* = [A, R_1^*, R_2^*]$ efficiently

Goal: Elicit an agent's true preference system

 $\mathcal{A}^* = [A, R_1^*, R_2^*]$

by asking as few as possible ranking questions only about R_1^* .

Two different elicitation procedures:

- **Procedure 1:** For every presented pair $\{a_i, a_j\}$ with $(a_i, a_j) \in R_1^*$, we measure the agent's **consideration time** $t_{ij} > 0$ and use these times for constructing R_2 (hopefully matching R_2^*).
- **Procedure 2:** For every presented pair $\{a_i, a_j\}$ with $(a_i, a_j) \in R_1^*$, we collect a label of **preference strength** and utilize the collected labels for constructing R_2 (hopefully matching R_2^*).

Question: Under which conditions do Procedures 1 and 2 produce the agent's true preference system $A^* = [A, R_1^*, R_2^*]$?

Time elicitation

Input:
$$A = \{a_1, ..., a_n\}; R_1 = \emptyset; C = \emptyset;$$

Output: $A = [A, R_1, R_2];$

Procedure: Present all pairs $\{a_i, a_j\}$ from $A_{\{2\}} := \{\{a, b\} : a \neq b \in A\}$.

- i) Agent judges a_i and a_j incomparable. Set $C = C \cup \{(a_j, a_i), (a_i, a_j)\}$ and $t_{ij} = t_{ji} = 0$.
- ii) Agent ranks a_i strictly better than a_j . Set $R_1 = R_1 \cup \{(a_i, a_j)\}$ and measure consideration time $t_{ij} > 0$. Set $t_{ji} = 0$.
- iii) Agent ranks a_j strictly better than a_i . Set $R_1 = R_1 \cup \{(a_j, a_i)\}$ and measure consideration time $t_{ji} > 0$. Set $t_{ij} = 0$.
- iv) Agent is indifferent between a_j and a_i . Set $R_1 = R_1 \cup \{(a_i, a_j), (a_j, a_i)\}$ and $t_{ij} = t_{ji} = c_{\infty} > \max\{t_{pq} : (a_p, a_q) \in P_{R_1^*}\}$.

Define R_2 by setting $((a_i, a_j), (a_k, a_l)) \in R_2 \quad :\Leftrightarrow \quad t_{kl} - t_{ij} \geq 0 \land t_{ij} > 0.$

Procedure 1: Assumptions

Assumption 1

For (a_i, a_j) , $(a_k, a_l) \in R_1^*$ the following holds:

i)
$$t_{kl} > t_{ij} > 0$$
 if and only if $((a_i, a_j), (a_k, a_l)) \in P_{R_2^*}$

ii)
$$t_{kl} = t_{ij} > 0$$
 if and only if $((a_i, a_j), (a_k, a_l)) \in I_{R_2^*}$

iii)
$$t_{ij} = t_{ji} = c_{\infty}$$
 if and only if $(a_i, a_j) \in I_{R_1^*}$

Assumption 2

For
$$(a_i, a_j)$$
, $(a_j, a_k) \in P_{R_1^*}$ we have $\frac{1}{t_{ij}} + \frac{1}{t_{jk}} = \frac{1}{t_{ik}}$, whenever $(a_i, a_k) \in P_{R_1^*}$.

Assumption 3

For $(a_i, a_j) \in I_{R_1^*}$ we have

i)
$$t_{ki} = t_{kj}$$
 whenever $(a_k, a_i), (a_k, a_j) \in P_{R_1^*}$ and

ii)
$$t_{ik} = t_{jk}$$
 whenever $(a_i, a_k), (a_j, a_k) \in P_{R_1^*}$.

Proposition 1

Under Assumption 1, time elicitation produces the agents's true preference system $A^* = [A, R_1^*, R_2^*]$.

Proposition 2

Under Assumptions 1, 2 and 3 the true preference system $A^* = [A, R_1^*, R_2^*]$ is consistent if and only if R_1^* is transitive.

Procedure 1*: Suppose that after *k* steps of Procedure 1 we have elicited R_1^k and C^k . Sample the next pair to present from

$$A_{\{2\}} \setminus \{\{a,b\}: (a,b) \in H_{R_{1}^{k}} \lor (b,a) \in H_{R_{1}^{k}} \lor (a,b) \in C^{k}\}$$

and compute the missing times by using Assumption 2.

Proposition 3

Under Assumptions 1, 2 and 3, Procedure 1* terminates in \mathcal{A}^* if and only if R_1^* is transitive. By Proposition 2 we know \mathcal{A}^* is consistent in this case.

Setup: Agent assigns a label $\ell_r^{ij} \in \mathcal{L}_r := \{\mathbf{n}, \mathbf{c}, 0, 1, \dots, r\}$ to every (a_i, a_j) by some labelling function $\ell_r : A \times A \to \mathcal{L}_r$:

- **n** : non-comparable
- c : strict preference of unknown strength
- 0: indifferent
- $1, \ldots, r$: strict preference of increasing strength

Label elicitation

Input:
$$A = \{a_1, \ldots, a_n\}$$
; $R_1 = \emptyset$; number of labels *r*;

Output: $\mathcal{A} = [A, R_1, R_2];$

Procedure: Present all pairs $(a_i, a_j) \in A \times A$.

i) If
$$\ell_r^{ij} \in \mathcal{L}_r \setminus \{\mathbf{n}, 0\}$$
, set $R_1 = R_1 \cup \{(a_i, a_j)\}$.

ii) If
$$\ell_r^{ij} = 0$$
, set $R_1 = R_1 \cup \{(a_i, a_j), (a_j, a_i)\}$.

iii) If $\ell_r^{ij} = \mathbf{n}$, set $R_1 = R_1$.

Define R_2 by setting $((a_i, a_j), (a_k, a_l)) \in R_2 \quad :\Leftrightarrow \quad \ell_r^{ij} > \ell_r^{kl} \quad \lor \quad \ell_r^{ij} = \ell_r^{kl} = 0$

Procedure 2: Assumptions

Assumption 4

i)
$$(a_i, a_j) \in I_{R_1^*} \iff \ell_r^{ij} = 0$$

ii) $(a_i, a_j) \in P_{R_1^*} \iff \ell_r^{ij} \in \mathcal{L}_r \setminus \{\mathbf{n}, 0\} \land \ell_r^{ij} = \mathbf{n}$
iii) $(a_i, a_i) \in C_{R_r^*} \iff \ell_r^{ij} = \ell_r^{ij} = \mathbf{n}$

Assumption 5

For all (a_i, a_j) , $(a_k, a_l) \in R_1^*$ the following holds:

i)
$$\ell_r^{ij} > \ell_r^{kl} \Rightarrow ((a_i, a_j), (a_k, a_l)) \in P_{R_2^*}$$

ii) $\ell_r^{ij} = \ell_r^{kl} = 0 \Rightarrow ((a_i, a_j), (a_k, a_l)) \in I_{R_2^*}$
iii) $\ell_r^{ij} = \mathbf{c} \lor \ell_r^{kl} = \mathbf{c} \Leftrightarrow ((a_i, a_j), (a_k, a_l)) \in C_{R_2^*}$

Assumption 6

For all $((a_i, a_j), (a_k, a_l)) \in P_{R_2^*}$ the statement $\ell_r^{ij} = \ell_r^{kl} = x \notin \{0, \mathbf{n}, \mathbf{c}\}$ implies that $\{1, \ldots, r\} \subset \ell_r(A \times A)$.

Procedure 2: Findings

Proposition 4

The following two statements hold true:

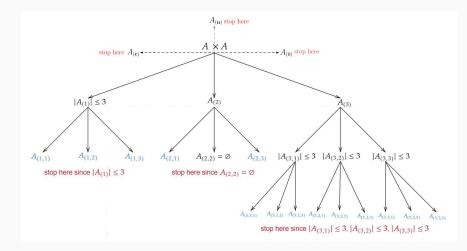
- i) If, for some r ∈ N, lr : A×A → Lr satisfies Assumptions 4 and 5, then Procedure 2 produces a sub-system of the decision maker's true preference system A*. Particularly, the procedure produces a consistent preference system whenever A* is consistent.
- ii) There exists $r_0 \in \mathbb{N}$ such that if $\ell_{r_0} : A \times A \to \mathcal{L}_{r_0}$ satisfies Assumptions 4, 5 and 6, then Procedure 2 produces the true \mathcal{A}^* .

Challenge: Although Prop. 4 ii) guarantees that Procedure 2 reproduces the agent's true preference system for some number of labels r^* , labelling in accordance with the assumptions might be *too demanding* if r^* is large.

Solution: Use a *relatively small* number of labels and restart elicitation on those pairs with equal label. Stop as soon as you know that equal labels *originate from indifference*.

Procedure 2: Hierarchical version

Graphical intuition:



Hierarchical version: Findings

For the hierarchical version of label elicitation to work, we need to assume that the agent is able to *adapt* the labelling function to arbitrary subsets.

Formally, we arrive at:

Assumption 7

For every $N \subseteq A \times A$ the labels on the restricted set of pairs N are given w.r.t. a labelling function $\ell_{(N,r)} : N \to \mathcal{L}_r$ satisfying Assumptions 4, 5 and 6.

This indeed allows the following Proposition:

Proposition 5

Let Assumption 7 hold true. For n = |A| consequences and $r \ge 2$ labels, the hierarchical version of Procedure 2 terminates in \mathcal{A}^* after at most $\max\{1, \lceil \frac{n^2 - r}{r-1} \rceil + 1\}$ elicitation rounds.

Application to decision making under uncertainty

We now return to *decision under uncertainty*:

- $\cdot\,$ Consider the decision problem ${\cal G}$ under uncertainty model ${\cal M}.$
- $\cdot\,$ Suppose \mathcal{A}^* is elicited by either Procedure 1 or 2 (or some variant).
- · Let $\mathcal{A}_1, \mathcal{A}_2, \ldots$ be the preference system after elicitation step 1, 2, \ldots

Proposition 6

Let the assumptions of the used procedure be satisfied. Then, for any k:

$$X \in ch_{\mathcal{A}_k,\mathcal{M}}(\mathcal{G}) \Rightarrow X \in ch_{\mathcal{A}^*,\mathcal{M}}(\mathcal{G})$$

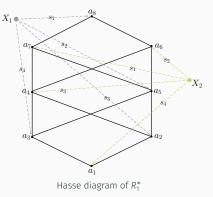
Why is this good?

If an act is optimal w.r.t. the preference system A_k elicited so far, we can terminate elicitation and conclude that it is optimal also w.r.t. the agent's true preference system A^* .

A small example

• Consider the following decision problem:

	S ₁	S ₂	S ₃	S 4
X ₁	a ₈	а ₅ а ₆	<i>a</i> ₂	<i>a</i> ₃
X ₂	<i>a</i> ₇	<i>a</i> ₆	<i>a</i> ₄	<i>a</i> ₁



 $e_{31}P_{R_2^*}e_{52}P_{R_2^*}e_{74}P_{R_2^*}e_{21}I_{R_2^*}e_{64}I_{R_2^*}e_{42}I_{R_2^*}e_{86}P_{R_2^*}e_{87}P_{R_2^*}e_{53}P_{R_2^*}e_{75}P_{R_2^*}e_{65}P_{R_2^*}e_{43}P_{12}P$

• Let $\mathcal{M} = \{\pi\}$, where π is the uniform distribution on S.

A small example, continued

Assume elicitation is done by using Procedure 2 with $\ell_5 : A \times A \rightarrow \mathcal{L}_5$.

Moreover, assume the first four elicitation steps look as follows:

Elicitation step	Presented pair	Label of the pair
1	(a ₈ , a ₇)	$\ell_5^{87} = 2$
2	(a_6, a_5)	$\ell_5^{65} = 1$
3	(a_3, a_1)	$\ell_5^{31} = 3$
4	(a_4, a_2)	$\ell_5^{42} = 2$

Then, for every $u \in U_{A_4}$ we can go on computing (where $u_i := u(a_i)$):

$$4 \cdot (\mathbb{E}_{\pi}(u \circ X_{1}) - \mathbb{E}_{\pi}(u \circ X_{2})) = \underbrace{(u_{8} - u_{7}) - (u_{6} - u_{5})}_{>0, \text{ since } (e_{87}, e_{65}) \in P_{R_{2}}} + \underbrace{(u_{3} - u_{1}) + (u_{4} - u_{2})}_{>0, \text{ since } (e_{31}, e_{42}) \in P_{R_{2}}} > 0$$

Thus $X_1 \in ch_{\mathcal{A}_4,\mathcal{M}}(\mathcal{G})$. Thus $X_1 \in ch_{\mathcal{A}^*,\mathcal{M}}(\mathcal{G})$ by Prop. 6.

!! We concluded that X1 is optimal by asking four simple ranking questions. !!

Ongoing and future research

There are several promising perspectives for future research:

- Finding data-driven methods for presenting the *most promising* pair of consequences in each elicitation step. (*Learn from previous rounds*.)
- Develop methods that *flexibly mix hierarchical and non-hierarchical procedures* to speed up elicitation.
- Investigate stopping properties of the procedures for choice functions other than $ch_{\mathcal{A},\mathcal{M}}$.