Decision making with state-dependent preference systems

Christoph Jansen & Thomas Augustin Department of Statistics, LMU Munich IPMU 2022, Milano

Decision Theory: Basic model & classical solution

We consider the basic model of finite Decision Theory:

• $A = \{a_1, \ldots, a_n\}$	set of consequences
• $S = \{S_1, \ldots, S_m\}$	set of states
$\cdot \ \mathcal{G} \subseteq A^{S} = \{X : S \to A\}$	set of acts

Decision Theory: Basic model & classical solution

We consider the basic model of finite Decision Theory:

- $A = \{a_1, \dots, a_n\}$ set of consequences
- $S = \{s_1, \dots, s_m\}$ set of states
- $\mathcal{G} \subseteq A^{S} = \{X : S \to A\}$ set of acts

Goal: Find optimal acts via some choice function

 $ch: 2^{\mathcal{G}} \to 2^{\mathcal{G}}$ with $ch(\mathcal{D}) \subseteq \mathcal{D}$ for all $\mathcal{D} \in 2^{\mathcal{G}}$

that best possibly utilizes the available information.

Decision Theory: Basic model & classical solution

We consider the basic model of finite Decision Theory:

- $A = \{a_1, \dots, a_n\}$ set of consequences
- $S = \{s_1, \dots, s_m\}$ set of states
- $\cdot \ \mathcal{G} \subseteq A^{\mathsf{S}} = \{X : \mathsf{S} \to A\}$ set of acts

Goal: Find optimal acts via some choice function

 $ch: 2^{\mathcal{G}} \to 2^{\mathcal{G}}$ with $ch(\mathcal{D}) \subseteq \mathcal{D}$ for all $\mathcal{D} \in 2^{\mathcal{G}}$

that best possibly utilizes the available information.

Classical approach: If both

- I) preferences on A are characterized by a cardinal utility $u : A \rightarrow \mathbb{R}$ and
- II) beliefs on S are characterized by a classical probability π ,

then one commonly maximizes expected utility, i.e. defines

$$ch_{u,\pi}(\mathcal{D}) := \left\{ Y \in \mathcal{D} : \mathbb{E}_{\pi}(u \circ Y) \geq \mathbb{E}_{\pi}(u \circ X) \text{ for all } X \in \mathcal{D} \right\}$$

Problems with the classical solution

Obviously: If I) and/or II) are not satisfied, then $ch_{u,\pi}(\mathcal{D})$ is not well-defined.

Problem: In practice, this will often be the case.

(I) and II) require strong axiomatic assumptions, e.g. the axioms of Savage)

Problems with the classical solution

Obviously: If I) and/or II) are not satisfied, then $ch_{u,\pi}(\mathcal{D})$ is not well-defined.

Problem: In practice, this will often be the case.

(I) and II) require strong axiomatic assumptions, e.g. the axioms of Savage)

Idea: Replace

- + u by a set \mathcal{U} of compatible utility functions on A and
- + π by a set ${\mathcal M}$ of compatible probability measures on S

and generalize

+ $ch_{u,\pi}$ to a choice function $ch_{\mathcal{U},\mathcal{M}}$

utilizing exactly the information that is encoded in the two sets ${\cal U}$ and ${\cal M}$ (and nothing more than that).

Modelling the set $\ensuremath{\mathcal{U}}$

Notation: Binary relation R has strict part P_R and indifference part I_R .

Preference system & Consistency

Let A denote a set of consequences. Let further

- $R_1 \subseteq A \times A$ be a binary relation on A
- $R_2 \subseteq R_1 \times R_1$ be a binary relation on R_1

The triplet $\mathcal{A} = [A, R_1, R_2]$ is called a **preference system** on A. We call \mathcal{A} **consistent** if there exists $u : A \to [0, 1]$ such that for all $a, b, c, d \in A$:

•
$$(a,b) \in R_1 \Rightarrow u(a) \ge u(b)$$
 (with $= iff \in I_{R_1}$).

• $((a,b),(c,d)) \in R_2 \Rightarrow u(a) - u(b) \ge u(c) - u(d)$ (with $= iff \in I_{R_2}$).

The set of all representations u of A is denoted by U_A .

Modelling the set $\ensuremath{\mathcal{U}}$

Notation: Binary relation R has strict part P_R and indifference part I_R .

Preference system & Consistency

Let A denote a set of consequences. Let further

- $R_1 \subseteq A \times A$ be a binary relation on A
- $R_2 \subseteq R_1 \times R_1$ be a binary relation on R_1

The triplet $\mathcal{A} = [A, R_1, R_2]$ is called a **preference system** on A. We call \mathcal{A} **consistent** if there exists $u : A \rightarrow [0, 1]$ such that for all $a, b, c, d \in A$:

•
$$(a,b) \in R_1 \Rightarrow u(a) \ge u(b)$$
 (with $= iff \in I_{R_1}$).

• $((a,b),(c,d)) \in R_2 \Rightarrow u(a) - u(b) \ge u(c) - u(d)$ (with $= iff \in I_{R_2}$).

The set of all representations u of A is denoted by U_A .

Interpretation of the components of \mathcal{A} :

- · (a, b) \in R₁: "a is at least as desirable as b"
- $((a,b),(c,d)) \in R_2$: "exchanging b by a is at least as desirable as d by c" 3

Modelling the set $\ensuremath{\mathcal{M}}$

The uncertainty about S is characterized by a credal set of probabilities:

$$\mathcal{M} = \left\{ \pi \in \mathcal{P} : \underline{b}_{\ell} \leq \mathbb{E}_{\pi}(f_{\ell}) \leq \overline{b}_{\ell} \text{ for } \ell = 1, \dots, r \right\}$$

where \mathcal{P} denotes the set of all probability measures on (S, 2^S) and

- · $f_1, \ldots, f_r : S \to \mathbb{R}$ are real-valued mappings and
- $\underline{b}_{\ell} \leq \overline{b}_{\ell}$, $\ell = 1, ..., r$, are lower and upper expectation bounds.

Such \mathcal{M} is a convex and finitely generated polyhedron with extreme points

$$\mathcal{E}(\mathcal{M}) = \{\pi^{(1)}, \dots \pi^{(K)}\}$$

Modelling the set $\ensuremath{\mathcal{M}}$

The uncertainty about S is characterized by a credal set of probabilities:

$$\mathcal{M} = \left\{ \pi \in \mathcal{P} : \underline{b}_{\ell} \leq \mathbb{E}_{\pi}(f_{\ell}) \leq \overline{b}_{\ell} \text{ for } \ell = 1, \dots, r \right\}$$

where \mathcal{P} denotes the set of all probability measures on (S, 2^S) and

- · $f_1, \ldots, f_r : S \to \mathbb{R}$ are real-valued mappings and
- $\underline{b}_{\ell} \leq \overline{b}_{\ell}$, $\ell = 1, ..., r$, are lower and upper expectation bounds.

Such \mathcal{M} is a convex and finitely generated polyhedron with extreme points

$$\mathcal{E}(\mathcal{M}) = \{\pi^{(1)}, \dots \pi^{(K)}\}$$

 \rightarrow Very general uncertainty model capturing special cases such as:

Classical probability — Interval probability — Lower previsions — Linear partial information — Neighbourhood models

Decision making based on $\mathcal{U}_{\mathcal{A}}$ and \mathcal{M}

Theory for optimal decision making based on the sets $\mathcal{U}_{\mathcal{A}}$ and \mathcal{M} as well as efficient computation algorithms have been developed in:

Methods for efficient elicitation of the underlying preference system and their theoretical properties have been investigated in:

Problem: All these models only work for state-independent preferences!

Today: State-dependent preference systems

In many applications, the agent's preferences in a decision problem under uncertainty can not be modeled independently of the true state of nature.

Prominent examples:

- Insurance science: Often, a policyholder's preferences are modelled to be dependent on her health status.
- Portfolio selection: The agent's attitude towards risky choices (and therefore indirectly the underlying preferences) are seen as depending on some exogenous environment.

Basic Definitions I

We start by giving the fundamental definition of our basic model.

State-dependent decision system

Let

- · $\mathcal{A}_s = [A, R_1^s, R_2^s]$ be a preference system for every state $s \in S$, and
- $\mathcal{G} \subseteq A^{\mathsf{S}} := \{f : \mathsf{S} \to \mathsf{A}\}$ non-empty.

We call the pair

$$\mathcal{D} = \left[\mathcal{G}, \left(\mathcal{A}_{s}\right)_{s \in S}\right]$$

a decision system. We call ${\cal D}$

- state-independent if $A_s = A_{s'}$ for all $s, s' \in S$ and
- state-dependent otherwise.

Basic Definitions II

Especially in the case of a state-dependent decision system, it is useful to consider only utility functions that measure the utility on the same scale.

Commonly scalable, consistent

 $\mathcal{D} = [\mathcal{G}, (\mathcal{A}_s)_{s \in S}]$ is called **commonly scalable** if there exist with $a_*, a^* \in A$

 $(a^*,a) \in R_1^s \land (a,a_*) \in R_1^s$

for all $a \in A$ and $s \in S$.

Further, ${\mathcal D}$ is called $\mbox{consistent}$ if

$$\mathcal{N}_{\mathcal{A}_{S}} := \left\{ u \in \mathcal{U}_{\mathcal{A}_{S}} : u(a_{*}) = 0 \ \land \ u(a^{*}) = 1 \right\} \neq \emptyset$$

for all states $s \in S$.

Dealing with the state-independent parts:

We assume, without restricting generality of what follows, that for some $\ell \in \{1, \dots, m\}$ there is a partition $\mathbb{S} := \{S_1, \dots, S_\ell\}$ of S satisfying:

- i) For all $d \in \{1, \dots, \ell\}$ and all $s_{i_1}, s_{i_2} \in S_d$ it holds $\mathcal{A}_{s_{i_1}} = \mathcal{A}_{s_{i_2}}$.
- ii) For all $c \neq d \in \{1, \dots, \ell\}$ and all $s_{i_1} \in S_c$ and $s_{i_2} \in S_d$ it holds $\mathcal{A}_{s_{i_1}} \neq \mathcal{A}_{s_{i_2}}$.
- iii) For $c < d \in \{1, \dots, \ell\}$, if $s_{i_1} \in S_c$ and $s_{i_2} \in S_d$, then $i_1 < i_2$.

We then denote by \mathcal{A}_{S_d} the preference system \mathcal{A}_s for arbitrary $s \in S_d$.

The criterion of $(\mathcal{D}, \mathcal{M})$ -dominance

Preparation: Let

- $\cdot \, \, \mathcal{D}$ be commonly scalable and consistent and
- π be a probability measure on (S, 2^s) and
- · $u := (u_d)_{d=1,...,\ell}$ be such that $u_d \in \mathcal{N}_{\mathcal{A}_{S_d}}$ for each $d = 1, ..., \ell$.

The (π, u) -expectation of an act $X \in \mathcal{G}$ is the expression:

$$E_{(\pi,u)}(X) = \sum_{d=1}^{\ell} \left(\sum_{s \in S_d} u_d(X(s)) \cdot \pi(\{s\}) \right)$$

$(\mathcal{D}, \mathcal{M})$ -dominance

Let $\ensuremath{\mathcal{M}}$ be a convex and finitely generated credal set.

For $X, Y \in \mathcal{G}$, say that Y is $(\mathcal{D}, \mathcal{M})$ -dominated by X if

$$E_{(\pi,u)}(X) \geq E_{(\pi,u)}(Y)$$

for every $u := (u_d)_{d=1,...,\ell}$ with $u_d \in \mathcal{N}_{\mathcal{A}_{S_d}}$ and every $\pi \in \mathcal{M}$.

Remarks and special cases

If we have a state-independent DS...

• ... with $\mathcal{M} = \{\pi\}$ and $R_2 = \emptyset$

 \rightarrow criterion reduces to (first-order) stochastic dominance

• ... with $\mathcal{M} = \{\pi\}$ and R_1 and R_2 guaranteeing utility unique up to plts

 \rightarrow criterion reduces to comparing expected utility

Checking for $(\mathcal{D}, \mathcal{M})$ -dominance: Preparation

Now, let

- · $\mathcal{A} = [A, R_1, R_2]$ be a consistent decision system and
- $a_{k_1}, a_{k_2} \in A$ such that $(a_{k_1}, a) \in R_1$ and $(a, a_{k_2}) \in R_1$ for all $a \in A$.

A vector (v_1, \ldots, v_n) containing exactly the images of a utility function $u \in \mathcal{N}_A$ is then describable by the system of linear (in-)equalities given through

- $v_{k_1} = 1$ and $v_{k_2} = 0$,
- $v_i = v_j$ for every pair $(a_i, a_j) \in I_{R_1}$,
- $v_i v_j \ge 0$ for every pair $(a_i, a_j) \in P_{R_1}$,
- $v_k v_l = v_p v_q$ for every pair of pairs $((a_k, a_l), (a_p, a_q)) \in I_{R_2}$ and
- $v_k v_l v_p + v_q \ge 0$ for every pair of pairs $((a_k, a_l), (a_p, a_q)) \in P_{R_2}$.

Denote by $\Delta_{\mathcal{A}}$ the set of all $(v_1, \ldots, v_n) \in [0, 1]^n$ satisfying these (in)equalities.

Checking for $(\mathcal{D}, \mathcal{M})$ -dominance: Linear Program

Checking for $(\mathcal{D}, \mathcal{M})$ -dominance

Let $\ensuremath{\mathcal{D}}$ be consistent and commonly scalable.

For $X, Y \in \mathcal{G}$, denote by x_j, y_j the unique i_X, i_Y with $X(s_j) = a_{i_X}$ and $Y(s_j) = a_{i_Y}$. For every fixed $t \in \{1, ..., K\}$, consider the linear optimization problem

$$\sum_{d=0}^{\ell-1} \left(\sum_{j=c_d+1}^{c_{d+1}} (v_{x_j}^d - v_{y_j}^d) \cdot \pi^{(t)}(\{s_j\}) \right) \longrightarrow \min_{(v_1^1, \dots, v_n^1, \dots, v_n^\ell, \dots, v_n^\ell)}$$

with constraints

•
$$(V_1^d, \ldots, V_n^d) \in \Delta_{\mathcal{A}_{S_d}}$$
 for every $d \in \{1, \ldots, \ell\}$

and the conventions $S_0 = \emptyset$ and $c_d = | \bigcup_{j=0}^d S_j |$.

Denote by opt(t) the optimal value for t fixed. It then holds:

$$X \ge_{(\mathcal{D},\mathcal{M})} Y \iff \min\left\{opt(t) : t \in \{1,\ldots,K\}\right\} \ge 0$$

Approximating the linear program

Challenge: The LPs have separate variables and constraints for each A_{S_d} under each $S_d \in \mathbb{S}$. This may produce high computational costs.

Idea: Approximate the LPs by grouping the preference systems under (in a certain sense) similar states of nature.

How exactly? Find partitions V of S of which the partition S is a refinement: For every element $S_d \in S$ there exists an element $V \in V$ such that $S_d \subseteq V$.

Then replace the LPs from before by

$$\sum_{d=0}^{\ell-1} \left(\sum_{j=p_d+1}^{p_{d+1}} (v_{x_j}^d - v_{y_j}^d) \cdot \pi^{(t)}(\{s_j\}) \right) \longrightarrow \min_{(v_1^1, \dots, v_n^t, \dots, v_n^t)}$$

with constraints

•
$$(V_1^d, \ldots, V_n^d) \in \Delta_{\mathcal{A}_{V_d}^{\mathbb{V}}}$$
 for every $d \in \{1, \ldots, r\}$

and, again, $V_0 = \emptyset$ and $p_d = | \cup_{j=0}^d V_j |$.

Pattern clustering: Partition the state space by grouping preference systems containing a predefined preference pattern.

Distance-based clustering: Partition the state space to groups of states $s \in S$ with 'similar' R_1^s , where similarity is defined by some distance between preorders and a threshold $\xi \in (0, 1)$ bounding it from above.

A small example

Let $A = \{a_*, b, c, d, a^*\}$ and consider the decision system

	S ₁	S ₂	S ₃
X 1	d	С	b
X_2	a*	d	<i>a</i> *

where

- $R_1^s = R_1^{s_1} = R_1^{s_2} = R_1^{s_3}$ are all induced by $a^* P_{R_1^s} dP_{R_1^s} cP_{R_1^s} bP_{R_1^s} a_*$,
- $R_2^{s_1}$ is induced by $e_{ba_*}I_{R_2^{s_1}}e_{cb}I_{R_2^{s_1}}e_{dc}I_{R_2^{s_1}}e_{a^*d}$,
- $R_2^{s_2}$ is induced by $e_{ba_*} P_{R_2^{s_2}} e_{cb} P_{R_2^{s_2}} e_{a^*d} P_{R_2^{s_2}} e_{dc}$,
- $R_2^{s_3}$ is induced by $e_{ba_*} P_{R_2^{s_3}} e_{a^*d} P_{R_2^{s_3}} e_{cb} P_{R_2^{s_3}} e_{dc}$.

Assume the uncertainty about S is described by the credal set

$$\mathcal{M} = \big\{ \pi : \pi(\{s_1\}) \le 0.2 \land \pi(\{s_2\}) \le 0.2 \big\}.$$

A small example, continued

Three observations:

(1)
$$A_{s_1}$$
 uniquely specifies a $u_{s_1} \in \mathcal{N}_{A_{s_1}}$ given by

 $(u_{s_1}(a_*), u_{s_1}(b), u_{s_1}(c), u_{s_1}(d), u_{s_1}(a^*)) = (0, 0.25, 0.5, 0.75, 1).$

(2) \mathcal{A}_{s_2} restricts all $u_{s_2} \in \mathcal{N}_{\mathcal{A}_{s_2}}$ to satisfy $u_{s_2}(d) - u_{s_2}(c) \leq 0.25$.

(3) \mathcal{A}_{s_3} restricts all $u_{s_3} \in \mathcal{N}_{\mathcal{A}_{s_3}}$ to satisfy $u_{s_3}(b) - u_{s_3}(a_*) \ge 0.25$.

Thus: For any $\pi \in \mathcal{M}$, $u_{s_1} \in \mathcal{N}_{\mathcal{A}_{s_1}}$, $u_{s_2} \in \mathcal{N}_{\mathcal{A}_{s_2}}$ and $u_{s_3} \in \mathcal{N}_{\mathcal{A}_{s_3}}$ the expression

$$E_{(\pi,u)}(X_1) - E_{(\pi,u)}(X_2)$$

can be computed by

$$-\underbrace{\pi_1(u_{s_1}(a^*)-u_{s_1}(d))}_{\leq 0.2 \cdot 0.25} - \underbrace{\pi_2(u_{s_2}(d)-u_{s_2}(c))}_{\leq 0.2 \cdot 0.25} + \underbrace{\pi_3(u_{s_3}(b)-u_{s_3}(a_*))}_{\geq 0.6 \cdot 0.25} > 0.$$

This gives $X_1 \geq_{(\mathcal{D},\mathcal{M})} X_2$.

An approximation under distance-based clustering yields the same.

Some directions for future research are:

- **Comparison of cluster techniques:** Investigate which technique to use in what type of concrete application example.
- Other approximation approaches: Utilize existing approximations for the special case of two-monotone lower probabilities.
- Adapt other decision criteria: An adaptation of other criteria to the state-dependent setting would certainly deserve further research.
- **Real world application:** Test the model and its approximations in real world decision making problems.