Decision making with state-dependent preference systems

Christoph Jansen \& Thomas Augustin Department of Statistics, LMU Munich
IPMU 2022, Milano

Decision Theory: Basic model \& classical solution

We consider the basic model of finite Decision Theory:

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$
set of consequences
- $S=\left\{s_{1}, \ldots, s_{m}\right\}$ set of states
- $\mathcal{G} \subseteq A^{S}=\{X: S \rightarrow A\}$ set of acts

Decision Theory: Basic model \& classical solution

We consider the basic model of finite Decision Theory:

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$
set of consequences
- $S=\left\{s_{1}, \ldots, s_{m}\right\}$ set of states
- $\mathcal{G} \subseteq A^{S}=\{X: S \rightarrow A\}$ set of acts

Goal: Find optimal acts via some choice function

$$
\text { ch : } 2^{\mathcal{G}} \rightarrow 2^{\mathcal{G}} \text { with } \operatorname{ch}(\mathcal{D}) \subseteq \mathcal{D} \text { for all } \mathcal{D} \in 2^{\mathcal{G}}
$$

that best possibly utilizes the available information.

Decision Theory: Basic model \& classical solution

We consider the basic model of finite Decision Theory:

- $A=\left\{a_{1}, \ldots, a_{n}\right\}$
set of consequences
- $S=\left\{S_{1}, \ldots, S_{m}\right\}$ set of states
- $\mathcal{G} \subseteq A^{S}=\{X: S \rightarrow A\}$ set of acts

Goal: Find optimal acts via some choice function

$$
\text { ch : } 2^{\mathcal{G}} \rightarrow 2^{\mathcal{G}} \text { with } \operatorname{ch}(\mathcal{D}) \subseteq \mathcal{D} \text { for all } \mathcal{D} \in 2^{\mathcal{G}}
$$

that best possibly utilizes the available information.
Classical approach: If both
I) preferences on A are characterized by a cardinal utility $u: A \rightarrow \mathbb{R}$ and
II) beliefs on S are characterized by a classical probability π,
then one commonly maximizes expected utility, i.e. defines

$$
\operatorname{ch}_{u, \pi}(\mathcal{D}):=\left\{Y \in \mathcal{D}: \mathbb{E}_{\pi}(u \circ Y) \geq \mathbb{E}_{\pi}(u \circ X) \text { for all } X \in \mathcal{D}\right\}
$$

Problems with the classical solution

Obviously: If I) and/or II) are not satisfied, then $\operatorname{ch}_{u, \pi}(\mathcal{D})$ is not well-defined.
Problem: In practice, this will often be the case.
(I) and II) require strong axiomatic assumptions, e.g. the axioms of Savage)

Problems with the classical solution

Obviously: If I) and/or II) are not satisfied, then $\operatorname{ch}_{u, \pi}(\mathcal{D})$ is not well-defined.
Problem: In practice, this will often be the case.
(I) and II) require strong axiomatic assumptions, e.g. the axioms of Savage)

Idea: Replace

- u by a set \mathcal{U} of compatible utility functions on A and
- π by a set \mathcal{M} of compatible probability measures on S
and generalize
- ch $_{u, \pi}$ to a choice function $\mathrm{ch}_{\mathcal{U}, \mathcal{M}}$
utilizing exactly the information that is encoded in the two sets \mathcal{U} and \mathcal{M} (and nothing more than that).

Modelling the set \mathcal{U}

Notation: Binary relation R has strict part P_{R} and indifference part I_{R}.

Preference system \& Consistency

Let A denote a set of consequences. Let further

- $R_{1} \subseteq A \times A$ be a binary relation on A
- $R_{2} \subseteq R_{1} \times R_{1}$ be a binary relation on R_{1}

The triplet $\mathcal{A}=\left[A, R_{1}, R_{2}\right]$ is called a preference system on A. We call \mathcal{A} consistent if there exists $u: A \rightarrow[0,1]$ such that for all $a, b, c, d \in A$:

- $(a, b) \in R_{1} \Rightarrow u(a) \geq u(b) \quad$ (with $=$ iff $\left.\in I_{R_{1}}\right)$.
- $((a, b),(c, d)) \in R_{2} \Rightarrow u(a)-u(b) \geq u(c)-u(d) \quad$ (with $=$ iff $\left.\in I_{R_{2}}\right)$.

The set of all representations u of \mathcal{A} is denoted by $\mathcal{U}_{\mathcal{A}}$.

Modelling the set \mathcal{U}

Notation: Binary relation R has strict part P_{R} and indifference part I_{R}.

Preference system \& Consistency

Let A denote a set of consequences. Let further

- $R_{1} \subseteq A \times A$ be a binary relation on A
- $R_{2} \subseteq R_{1} \times R_{1}$ be a binary relation on R_{1}

The triplet $\mathcal{A}=\left[A, R_{1}, R_{2}\right]$ is called a preference system on A. We call \mathcal{A} consistent if there exists $u: A \rightarrow[0,1]$ such that for all $a, b, c, d \in A$:

- $(a, b) \in R_{1} \Rightarrow u(a) \geq u(b) \quad$ (with $=$ iff $\left.\in I_{R_{1}}\right)$.
- $((a, b),(c, d)) \in R_{2} \Rightarrow u(a)-u(b) \geq u(c)-u(d) \quad$ (with $=$ iff $\left.\in I_{R_{2}}\right)$.

The set of all representations u of \mathcal{A} is denoted by $\mathcal{U}_{\mathcal{A}}$.
Interpretation of the components of \mathcal{A} :

- $(a, b) \in R_{1}$: "a is at least as desirable as b"
- $((a, b),(c, d)) \in R_{2}$: "exchanging b by a is at least as desirable as d by c "

Modelling the set \mathcal{M}

The uncertainty about S is characterized by a credal set of probabilities:

$$
\mathcal{M}=\left\{\pi \in \mathcal{P}: \underline{b}_{\ell} \leq \mathbb{E}_{\pi}\left(f_{\ell}\right) \leq \bar{b}_{\ell} \text { for } \ell=1, \ldots, r\right\}
$$

where \mathcal{P} denotes the set of all probability measures on $\left(S, 2^{S}\right)$ and

- $f_{1}, \ldots, f_{r}: S \rightarrow \mathbb{R}$ are real-valued mappings and
- $\underline{b}_{\ell} \leq \bar{b}_{\ell, \ell}=1, \ldots, r$, are lower and upper expectation bounds.

Such \mathcal{M} is a convex and finitely generated polyhedron with extreme points

$$
\mathcal{E}(\mathcal{M})=\left\{\pi^{(1)}, \ldots \pi^{(K)}\right\}
$$

Modelling the set \mathcal{M}

The uncertainty about S is characterized by a credal set of probabilities:

$$
\mathcal{M}=\left\{\pi \in \mathcal{P}: \underline{b}_{\ell} \leq \mathbb{E}_{\pi}\left(f_{\ell}\right) \leq \bar{b}_{\ell} \text { for } \ell=1, \ldots, r\right\}
$$

where \mathcal{P} denotes the set of all probability measures on $\left(S, 2^{S}\right)$ and

- $f_{1}, \ldots, f_{r}: S \rightarrow \mathbb{R}$ are real-valued mappings and
- $\underline{b}_{\ell} \leq \bar{b}_{\ell, \ell}=1, \ldots, r$, are lower and upper expectation bounds.

Such \mathcal{M} is a convex and finitely generated polyhedron with extreme points

$$
\mathcal{E}(\mathcal{M})=\left\{\pi^{(1)}, \ldots \pi^{(K)}\right\}
$$

\rightarrow Very general uncertainty model capturing special cases such as:
Classical probability - Interval probability - Lower previsions - Linear partial information - Neighbourhood models

Decision making based on $\mathcal{U}_{\mathcal{A}}$ and \mathcal{M}

Theory for optimal decision making based on the sets $\mathcal{U}_{\mathcal{A}}$ and \mathcal{M} as well as efficient computation algorithms have been developed in:

Contonte liste svailable at ScienceDiroct
International Journal of Approximate Reasoning

Concepts for decision making under severe uncertainty with partial ordinal and partial cardinal preferences
C. Jansen *, G. Schollmeyer, T. Augustin

Methods for efficient elicitation of the underlying preference system and their theoretical properties have been investigated in:

Information efficient learning of complexly structured preferences: Elicitation procedures and their application to decision making under uncertainty
C. Jansen ${ }^{*}$, H. Blocher, T. Augustin, G. Schollmeyer

Problem: All these models only work for state-independent preferences!

Today: State-dependent preference systems

In many applications, the agent's preferences in a decision problem under uncertainty can not be modeled independently of the true state of nature.

Prominent examples:

- Insurance science: Often, a policyholder's preferences are modelled to be dependent on her health status.
- Portfolio selection: The agent's attitude towards risky choices (and therefore indirectly the underlying preferences) are seen as depending on some exogenous environment.

Basic Definitions I

We start by giving the fundamental definition of our basic model.

State-dependent decision system

Let

- $\mathcal{A}_{s}=\left[A, R_{1}^{s}, R_{2}^{s}\right]$ be a preference system for every state $s \in S$, and
- $\mathcal{G} \subseteq A^{S}:=\{f: S \rightarrow A\}$ non-empty.

We call the pair

$$
\mathcal{D}=\left[\mathcal{G},\left(\mathcal{A}_{S}\right)_{s \in S}\right]
$$

a decision system. We call \mathcal{D}

- state-independent if $\mathcal{A}_{s}=\mathcal{A}_{s^{\prime}}$ for all $s, s^{\prime} \in S$ and
- state-dependent otherwise.

Basic Definitions II

Especially in the case of a state-dependent decision system, it is useful to consider only utility functions that measure the utility on the same scale.

Commonly scalable, consistent

$\mathcal{D}=\left[\mathcal{G},\left(\mathcal{A}_{s}\right)_{s \in S}\right]$ is called commonly scalable if there exist with $a_{*}, a^{*} \in A$

$$
\left(a^{*}, a\right) \in R_{1}^{s} \wedge\left(a, a_{*}\right) \in R_{1}^{S}
$$

for all $a \in A$ and $s \in S$.
Further, \mathcal{D} is called consistent if

$$
\mathcal{N}_{\mathcal{A}_{\mathrm{s}}}:=\left\{u \in \mathcal{U}_{\mathcal{A}_{\mathrm{s}}}: u\left(a_{*}\right)=0 \wedge u\left(a^{*}\right)=1\right\} \neq \emptyset
$$

for all states $s \in S$.

Structural assumption (wlog)

Dealing with the state-independent parts:

We assume, without restricting generality of what follows, that for some $\ell \in$ $\{1, \ldots m\}$ there is a partition $\mathbb{S}:=\left\{S_{1}, \ldots, S_{\ell}\right\}$ of S satisfying:
i) For all $d \in\{1, \ldots, \ell\}$ and all $s_{i_{1}}, s_{i_{2}} \in S_{d}$ it holds $\mathcal{A}_{s_{i_{1}}}=\mathcal{A}_{s_{i_{2}}}$.
ii) For all $c \neq d \in\{1, \ldots, \ell\}$ and all $s_{i_{1}} \in S_{c}$ and $s_{i_{2}} \in S_{d}$ it holds $\mathcal{A}_{s_{i_{1}}} \neq \mathcal{A}_{s_{i_{2}}}$.
iii) For $c<d \in\{1, \ldots, \ell\}$, if $s_{i_{1}} \in S_{c}$ and $s_{i_{2}} \in S_{d}$, then $i_{1}<i_{2}$.

We then denote by $\mathcal{A}_{s_{d}}$ the preference system \mathcal{A}_{s} for arbitrary $s \in S_{d}$.

The criterion of $(\mathcal{D}, \mathcal{M})$-dominance

Preparation: Let

- \mathcal{D} be commonly scalable and consistent and
- π be a probability measure on $\left(S, 2^{S}\right)$ and
- $u:=\left(u_{d}\right)_{d=1, \ldots, \ell}$ be such that $u_{d} \in \mathcal{N}_{\mathcal{A}_{s_{d}}}$ for each $d=1, \ldots, \ell$.

The (π, u)-expectation of an act $X \in \mathcal{G}$ is the expression:

$$
E_{(\pi, u)}(X)=\sum_{d=1}^{\ell}\left(\sum_{s \in S_{d}} u_{d}(X(s)) \cdot \pi(\{s\})\right)
$$

(\mathcal{D}, \mathcal{M})-dominance

Let \mathcal{M} be a convex and finitely generated credal set.
For $X, Y \in \mathcal{G}$, say that Y is $(\mathcal{D}, \mathcal{M})$-dominated by X if

$$
E_{(\pi, u)}(X) \geq E_{(\pi, u)}(Y)
$$

for every $u:=\left(u_{d}\right)_{d=1, \ldots, \ell}$ with $u_{d} \in \mathcal{N}_{\mathcal{A}_{S_{d}}}$ and every $\pi \in \mathcal{M}$.

Remarks and special cases

If we have a state-independent DS...

- ... with $\mathcal{M}=\{\pi\}$ and $R_{2}=\emptyset$
\rightarrow criterion reduces to (first-order) stochastic dominance
-... with $\mathcal{M}=\{\pi\}$ and R_{1} and R_{2} guaranteeing utility unique up to plts
\rightarrow criterion reduces to comparing expected utility

Checking for $(\mathcal{D}, \mathcal{M})$-dominance: Preparation

Now, let

- $\mathcal{A}=\left[A, R_{1}, R_{2}\right]$ be a consistent decision system and
- $a_{k_{1}}, a_{k_{2}} \in A$ such that $\left(a_{k_{1}}, a\right) \in R_{1}$ and $\left(a, a_{k_{2}}\right) \in R_{1}$ for all $a \in A$.

A vector $\left(v_{1}, \ldots, v_{n}\right)$ containing exactly the images of a utility function $u \in \mathcal{N}_{\mathcal{A}}$ is then describable by the system of linear (in-)equalities given through

- $v_{k_{1}}=1$ and $v_{k_{2}}=0$,
- $v_{i}=v_{j}$ for every pair $\left(a_{i}, a_{j}\right) \in I_{R_{1}}$,
- $v_{i}-v_{j} \geq 0$ for every pair $\left(a_{i}, a_{j}\right) \in P_{R_{1}}$,
- $v_{k}-v_{l}=v_{p}-v_{q}$ for every pair of pairs $\left(\left(a_{k}, a_{l}\right),\left(a_{p}, a_{q}\right)\right) \in I_{R_{2}}$ and
- $v_{k}-v_{l}-v_{p}+v_{q} \geq 0$ for every pair of pairs $\left(\left(a_{k}, a_{l}\right),\left(a_{p}, a_{q}\right)\right) \in P_{R_{2}}$.

Denote by $\Delta_{\mathcal{A}}$ the set of all $\left(v_{1}, \ldots, v_{n}\right) \in[0,1]^{n}$ satisfying these (in)equalities.

Checking for $(\mathcal{D}, \mathcal{M})$-dominance: Linear Program

Checking for (\mathcal{D}, \mathcal{M})-dominance

Let \mathcal{D} be consistent and commonly scalable.
For $X, Y \in \mathcal{G}$, denote by x_{j}, y_{j} the unique i_{X}, i_{Y} with $X\left(s_{j}\right)=a_{i x}$ and $Y\left(s_{j}\right)=a_{i y}$. For every fixed $t \in\{1, \ldots, K\}$, consider the linear optimization problem

$$
\sum_{d=0}^{\ell-1}\left(\sum_{j=c_{d}+1}^{c_{d+1}}\left(v_{x_{j}}^{d}-v_{y_{j}}^{d}\right) \cdot \pi^{(t)}\left(\left\{s_{j}\right\}\right)\right) \longrightarrow \min _{\left(v_{1}^{1}, \ldots, v_{n}^{1}, \ldots, v_{1}^{\ell}, \ldots v_{n}^{\ell}\right)}
$$

with constraints

$$
\left(v_{1}^{d}, \ldots, v_{n}^{d}\right) \in \Delta_{\mathcal{A}_{s_{d}}} \text { for every } d \in\{1, \ldots, \ell\}
$$

and the conventions $S_{0}=\emptyset$ and $c_{d}=\left|\cup_{j=0}^{d} S_{j}\right|$.
Denote by opt (t) the optimal value for t fixed. It then holds:

$$
X \geq_{(\mathcal{D}, \mathcal{M})} Y \Leftrightarrow \min \{o p t(t): t \in\{1, \ldots, K\}\} \geq 0
$$

Approximating the linear program

Challenge: The LPs have separate variables and constraints for each $\mathcal{A}_{s_{d}}$ under each $S_{d} \in \mathbb{S}$. This may produce high computational costs.

Idea: Approximate the LPs by grouping the preference systems under (in a certain sense) similar states of nature.

How exactly? Find partitions \mathbb{V} of S of which the partition \mathbb{S} is a refinement: For every element $S_{d} \in \mathbb{S}$ there exists an element $V \in \mathbb{V}$ such that $S_{d} \subseteq V$.

Then replace the LPs from before by

$$
\sum_{d=0}^{\ell-1}\left(\sum_{j=p_{d}+1}^{p_{d+1}}\left(v_{x_{j}}^{d}-v_{y_{j}}^{d}\right) \cdot \pi^{(t)}\left(\left\{s_{j}\right\}\right)\right) \longrightarrow \min _{\left(v_{1}^{1}, \ldots, v_{n}^{1}, \ldots, v_{1}^{r}, \ldots v_{n}^{r}\right)}
$$

with constraints

- $\left(v_{1}^{d}, \ldots, v_{n}^{d}\right) \in \Delta_{\mathcal{A}_{v_{d}}^{v}}$ for every $d \in\{1, \ldots, r\}$
and, again, $V_{0}=\emptyset$ and $p_{d}=\left|\cup_{j=0}^{d} V_{j}\right|$.

Different choices for the partition

Pattern clustering: Partition the state space by grouping preference systems containing a predefined preference pattern.

Distance-based clustering: Partition the state space to groups of states $s \in S$ with 'similar' R_{1}^{s}, where similarity is defined by some distance between preorders and a threshold $\xi \in(0,1)$ bounding it from above.

A small example

Let $A=\left\{a_{*}, b, c, d, a^{*}\right\}$ and consider the decision system

	s_{1}	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$
X_{1}	d	c	b
X_{2}	a^{*}	d	a_{*}

where

- $R_{1}^{s}=R_{1}^{s_{1}}=R_{1}^{s_{2}}=R_{1}^{s_{3}}$ are all induced by $a^{*} P_{R_{1}^{s}} d P_{R_{1}^{s}} C P_{R_{1}^{s}} b P_{R_{1}^{s}} a_{*}$,
- $R_{2}^{s 1}$ is induced by $e_{b a_{*}} I_{R_{2}^{s 1}} e_{c b} l_{R_{2}^{s 1}} e_{d c} l_{R_{2}^{s 1}} e_{a^{*} d}$,
- $R_{2}^{s_{2}}$ is induced by $e_{b a_{*}} P_{R_{2}^{s_{2}}} e_{c b} P_{R_{2}^{s_{2}}} e_{a_{d}} P_{R_{2}^{s_{2}}} e_{d c}$,
- $R_{2}^{s_{3}}$ is induced by $e_{b a_{*}} P_{R_{2}^{s_{3}}} e_{a^{*} d} P_{R_{2}^{s_{3}}} e_{c b} P_{R_{2}^{s_{3}}} e_{d c}$.

Assume the uncertainty about S is described by the credal set

$$
\mathcal{M}=\left\{\pi: \pi\left(\left\{s_{1}\right\}\right) \leq 0.2 \wedge \pi\left(\left\{s_{2}\right\}\right) \leq 0.2\right\}
$$

A small example, continued

Three observations:
(1) $\mathcal{A}_{s_{1}}$ uniquely specifies a $u_{s_{1}} \in \mathcal{N}_{\mathcal{A}_{s_{1}}}$ given by

$$
\left(u_{s_{1}}\left(a_{*}\right), u_{s_{1}}(b), u_{s_{1}}(c), u_{s_{1}}(d), u_{s_{1}}\left(a^{*}\right)\right)=(0,0.25,0.5,0.75,1) .
$$

(2) $\mathcal{A}_{s_{2}}$ restricts all $u_{s_{2}} \in \mathcal{N}_{\mathcal{A}_{s_{2}}}$ to satisfy $u_{s_{2}}(d)-u_{s_{2}}(c) \leq 0.25$.
(3) $\mathcal{A}_{s_{3}}$ restricts all $u_{s_{3}} \in \mathcal{N}_{\mathcal{A}_{s_{3}}}$ to satisfy $u_{s_{3}}(b)-u_{s_{3}}\left(a_{*}\right) \geq 0.25$.

Thus: For any $\pi \in \mathcal{M}, u_{s_{1}} \in \mathcal{N}_{\mathcal{A}_{s_{1}}}, u_{s_{2}} \in \mathcal{N}_{\mathcal{A}_{s_{2}}}$ and $u_{s_{3}} \in \mathcal{N}_{\mathcal{A}_{s_{3}}}$ the expression

$$
E_{(\pi, u)}\left(X_{1}\right)-E_{(\pi, u)}\left(X_{2}\right)
$$

can be computed by

$$
-\underbrace{\pi_{1}\left(u_{s_{1}}\left(a^{*}\right)-u_{s_{1}}(d)\right)}_{\leq 0.2 \cdot 0.25}-\underbrace{\pi_{2}\left(u_{s_{2}}(d)-u_{s_{2}}(c)\right)}_{\leq 0.2 \cdot 0.25}+\underbrace{\pi_{3}\left(u_{s_{3}}(b)-u_{s_{3}}\left(a_{*}\right)\right)}_{\geq 0.6 \cdot 0.25}>0
$$

This gives $X_{1} \geq_{(\mathcal{D}, \mathcal{M})} X_{2}$.
An approximation under distance-based clustering yields the same.

Directions for future research

Some directions for future research are:

- Comparison of cluster techniques: Investigate which technique to use in what type of concrete application example.
- Other approximation approaches: Utilize existing approximations for the special case of two-monotone lower probabilities.
- Adapt other decision criteria: An adaptation of other criteria to the state-dependent setting would certainly deserve further research.
- Real world application: Test the model and its approximations in real world decision making problems.

