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Decision Theory: Basic model & classical solution

We consider the basic model of finite Decision Theory:

• A = {a1, . . . , an} set of consequences

• S = {s1, . . . , sm} set of states

• G ⊆ AS = {X : S→ A} set of acts

Goal: Find optimal acts via some choice function

ch : 2G → 2G with ch(D) ⊆ D for all D ∈ 2G

that best possibly utilizes the available information.

Classical approach: If both

I) preferences on A are characterized by a cardinal utility u : A→ R and

II) beliefs on S are characterized by a classical probability π,

then one commonly maximizes expected utility, i.e. defines

chu,π(D) :=
{
Y ∈ D : Eπ(u ◦ Y) ≥ Eπ(u ◦ X) for all X ∈ D

}
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Problems with the classical solution

Obviously: If I) and/or II) are not satisfied, then chu,π(D) is not well-defined.

Problem: In practice, this will often be the case.

(I) and II) require strong axiomatic assumptions, e.g. the axioms of Savage)

Idea: Replace

• u by a set U of compatible utility functions on A and

• π by a setM of compatible probability measures on S

and generalize

• chu,π to a choice function chU,M

utilizing exactly the information that is encoded in the two sets U and M
(and nothing more than that).
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Modelling the set U

Notation: Binary relation R has strict part PR and indifference part IR.

Preference system & Consistency
Let A denote a set of consequences. Let further

• R1 ⊆ A× A be a binary relation on A

• R2 ⊆ R1 × R1 be a binary relation on R1

The triplet A = [A,R1,R2] is called a preference system on A. We call A
consistent if there exists u : A→ [0, 1] such that for all a, b, c,d ∈ A:

• (a, b) ∈ R1 ⇒ u(a) ≥ u(b) (with = iff ∈ IR1 ).

• ((a, b), (c,d)) ∈ R2 ⇒ u(a)− u(b) ≥ u(c)− u(d) (with = iff ∈ IR2 ).

The set of all representations u of A is denoted by UA.

Interpretation of the components of A:

• (a, b) ∈ R1: “a is at least as desirable as b”

• ((a, b), (c,d)) ∈ R2: “exchanging b by a is at least as desirable as d by c”
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Modelling the setM

The uncertainty about S is characterized by a credal set of probabilities:

M =
{
π ∈ P : bℓ ≤ Eπ(fℓ) ≤ bℓ for ℓ = 1, . . . , r

}
where P denotes the set of all probability measures on (S, 2S) and

• f1, . . . , fr : S→ R are real-valued mappings and

• bℓ ≤ bℓ, ℓ = 1, . . . , r, are lower and upper expectation bounds.

SuchM is a convex and finitely generated polyhedron with extreme points

E(M) = {π(1), . . . π(K)}

|

→ Very general uncertainty model capturing special cases such as:

Classical probability− Interval probability− Lower previsions− Linear partial
information − Neighbourhood models
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Decision making based on UA andM

Theory for optimal decision making based on the sets UA and M as well as
efficient computation algorithms have been developed in:

Methods for efficient elicitation of the underlying preference system and their
theoretical properties have been investigated in:

Problem: All these models only work for state-independent preferences!
5



Today: State-dependent preference systems

In many applications, the agent’s preferences in a decision problem under
uncertainty can not be modeled independently of the true state of nature.

Prominent examples:

• Insurance science: Often, a policyholder’s preferences are modelled to
be dependent on her health status.

• Portfolio selection: The agent’s attitude towards risky choices (and
therefore indirectly the underlying preferences) are seen as depending
on some exogenous environment.
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Basic Definitions I

We start by giving the fundamental definition of our basic model.

State-dependent decision system
Let

• As = [A,Rs1 ,Rs2] be a preference system for every state s ∈ S, and

• G ⊆ AS := {f : S→ A} non-empty.

We call the pair
D =

[
G,
(
As
)
s∈S

]
a decision system. We call D

• state-independent if As = As′ for all s, s
′
∈ S and

• state-dependent otherwise.
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Basic Definitions II

Especially in the case of a state-dependent decision system, it is useful to
consider only utility functions that measure the utility on the same scale.

Commonly scalable, consistent
D =

[
G, (As)s∈S

]
is called commonly scalable if there exist with a∗, a∗ ∈ A

(a∗, a) ∈ Rs1 ∧ (a, a∗) ∈ Rs1

for all a ∈ A and s ∈ S.

Further, D is called consistent if

NAs :=
{
u ∈ UAs : u(a∗) = 0 ∧ u(a∗) = 1

}
̸= ∅

for all states s ∈ S.
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Structural assumption (wlog)

Dealing with the state-independent parts:

We assume, without restricting generality of what follows, that for some ℓ ∈
{1, . . .m} there is a partition S := {S1, . . . , Sℓ} of S satisfying:

i) For all d ∈ {1, . . . , ℓ} and all si1 , si2 ∈ Sd it holds Asi1
= Asi2

.

ii) For all c ̸= d ∈ {1, . . . , ℓ} and all si1 ∈ Sc and si2 ∈ Sd it holds Asi1
̸= Asi2

.

iii) For c < d ∈ {1, . . . , ℓ}, if si1 ∈ Sc and si2 ∈ Sd, then i1 < i2.

We then denote by ASd the preference system As for arbitrary s ∈ Sd.
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The criterion of (D,M)-dominance

Preparation: Let

• D be commonly scalable and consistent and

• π be a probability measure on (S, 2S) and

• u := (ud)d=1,...,ℓ be such that ud ∈ NASd
for each d = 1, . . . , ℓ.

The (π,u)-expectation of an act X ∈ G is the expression:

E(π,u)(X) =
ℓ∑
d=1

(∑
s∈Sd

ud(X(s)) · π({s})
)

(D,M)-dominance
LetM be a convex and finitely generated credal set.

For X, Y ∈ G, say that Y is (D,M)-dominated by X if

E(π,u)(X) ≥ E(π,u)(Y)

for every u := (ud)d=1,...,ℓ with ud ∈ NASd
and every π ∈ M. 10



Remarks and special cases

If we have a state-independent DS...

• ... withM = {π} and R2 = ∅

→ criterion reduces to (first-order) stochastic dominance

• ... withM = {π} and R1 and R2 guaranteeing utility unique up to plts

→ criterion reduces to comparing expected utility
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Checking for (D,M)-dominance: Preparation

Now, let

• A = [A,R1,R2] be a consistent decision system and

• ak1 , ak2 ∈ A such that (ak1 , a) ∈ R1 and (a, ak2) ∈ R1 for all a ∈ A.

A vector (v1, . . . , vn) containing exactly the images of a utility function u ∈ NA

is then describable by the system of linear (in-)equalities given through

• vk1 = 1 and vk2 = 0,

• vi = vj for every pair (ai, aj) ∈ IR1 ,

• vi − vj ≥ 0 for every pair (ai, aj) ∈ PR1 ,

• vk − vl = vp − vq for every pair of pairs ((ak, al), (ap, aq)) ∈ IR2 and

• vk − vl − vp + vq ≥ 0 for every pair of pairs ((ak, al), (ap, aq)) ∈ PR2 .

Denote by∆A the set of all (v1, . . . , vn) ∈ [0, 1]n satisfying these (in)equalities.

12



Checking for (D,M)-dominance: Linear Program

Checking for (D,M)-dominance
Let D be consistent and commonly scalable.

For X, Y ∈ G, denote by xj, yj the unique iX, iY with X(sj) = aiX and Y(sj) = aiY .

For every fixed t ∈ {1, . . . , K}, consider the linear optimization problem

∑ℓ−1

d=0

(∑cd+1

j=cd+1
(vdxj − vdyj) · π

(t)({sj})
)
−→ min

(v11,...,v
1
n,...,vℓ1 ,...v

ℓ
n)

with constraints

• (vd1 , . . . , vdn) ∈ ∆ASd
for every d ∈ {1, . . . , ℓ}

and the conventions S0 = ∅ and cd = | ∪d
j=0 Sj|.

Denote by opt(t) the optimal value for t fixed. It then holds:

X ≥(D,M) Y ⇔ min
{
opt(t) : t ∈ {1, . . . , K}

}
≥ 0

13



Approximating the linear program

Challenge: The LPs have separate variables and constraints for each ASd un-
der each Sd ∈ S. This may produce high computational costs.

Idea: Approximate the LPs by grouping the preference systems under (in a
certain sense) similar states of nature.

How exactly? Find partitions V of S of which the partition S is a refinement:
For every element Sd ∈ S there exists an element V ∈ V such that Sd ⊆ V.

Then replace the LPs from before by

ℓ−1∑
d=0

( pd+1∑
j=pd+1

(vdxj − vdyj) · π
(t)({sj})

)
−→ min

(v11,...,v
1
n,...,vr1,...v

r
n)

with constraints

• (vd1 , . . . , vdn) ∈ ∆AV
Vd
for every d ∈ {1, . . . , r}

and, again, V0 = ∅ and pd = | ∪d
j=0 Vj|.
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Different choices for the partition

Pattern clustering: Partition the state space by grouping preference systems
containing a predefined preference pattern.

Distance-based clustering: Partition the state space to groups of states s ∈ S
with ’similar’ Rs1 , where similarity is defined by some distance between pre-
orders and a threshold ξ ∈ (0, 1) bounding it from above.
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A small example

Let A = {a∗, b, c,d, a∗} and consider the decision system

s1 s2 s3

X1 d c b
X2 a∗ d a∗

where

• Rs1 = Rs11 = Rs21 = Rs31 are all induced by a∗PRs1dPRs1cPRs1bPRs1a∗,

• Rs12 is induced by eba∗ IRs12 ecbIRs12 edcIRs12 ea∗d,

• Rs22 is induced by eba∗PRs22 ecbPRs22 ea∗dPRs22 edc,

• Rs32 is induced by eba∗PRs32 ea∗dPRs32 ecbPRs32 edc.

Assume the uncertainty about S is described by the credal set

M =
{
π : π({s1}) ≤ 0.2 ∧ π({s2}) ≤ 0.2

}
.
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A small example, continued

Three observations:

(1) As1 uniquely specifies a us1 ∈ NAs1
given by

(us1(a∗),us1(b),us1(c),us1(d),us1(a
∗)) = (0, 0.25, 0.5, 0.75, 1).

(2) As2 restricts all us2 ∈ NAs2
to satisfy us2(d)− us2(c) ≤ 0.25.

(3) As3 restricts all us3 ∈ NAs3
to satisfy us3(b)− us3(a∗) ≥ 0.25.

Thus: For any π ∈ M, us1 ∈ NAs1
, us2 ∈ NAs2

and us3 ∈ NAs3
the expression

E(π,u)(X1)− E(π,u)(X2)

can be computed by

−π1(us1(a
∗)− us1(d))︸ ︷︷ ︸

≤0.2·0.25

−π2(us2(d)− us2(c))︸ ︷︷ ︸
≤0.2·0.25

+π3(us3(b)− us3(a∗))︸ ︷︷ ︸
≥0.6·0.25

> 0.

This gives X1 ≥(D,M) X2.

An approximation under distance-based clustering yields the same. 17



Directions for future research

Some directions for future research are:

• Comparison of cluster techniques: Investigate which technique to use
in what type of concrete application example.

• Other approximation approaches: Utilize existing approximations for
the special case of two-monotone lower probabilities.

• Adapt other decision criteria: An adaptation of other criteria to the
state-dependent setting would certainly deserve further research.

• Real world application: Test the model and its approximations in real
world decision making problems.
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