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Decision Theory: Basic model & classical solution

We consider the basic model of finite Decision Theory:

cA={a,...,an} set of consequences
- S={s1,...,5m} set of states
cGCA ={X:S—=A} set of acts

Goal: Find optimal acts via some choice function
ch : 29 — 29 with ch(D) C D for all D € 29
that best possibly utilizes the available information.

Classical approach: If both
I) preferences on A are characterized by a cardinal utility u : A — R and
I1) beliefs on S are characterized by a classical probability T,

then one commonly maximizes expected utility, i.e. defines

chy (D) = {Y €D Ex(uoY)>E(uoX)forall X e D}



Problems with the classical solution

Obviously: If I) and/or 1) are not satisfied, then chy (D) is not well-defined.

Problem: In practice, this will often be the case.

(1) and 11) require strong axiomatic assumptions, e.g. the axioms of Savage)



Problems with the classical solution

Obviously: If I) and/or 1) are not satisfied, then chy (D) is not well-defined.

Problem: In practice, this will often be the case.

(1) and 11) require strong axiomatic assumptions, e.g. the axioms of Savage)

Idea: Replace
- u by a set U of compatible utility functions on A and

- 7 by a set M of compatible probability measures on S
and generalize
- chy,» to a choice function chy,m

utilizing exactly the information that is encoded in the two sets & and M
(and nothing more than that).



Modelling the set U/

Notation: Binary relation R has strict part Pr and indifference part Iz.

Let A denote a set of consequences. Let further

Ri C A x A be a binary relation on A

R, € Ry x Ry be a binary relation on R,

The triplet A = [A, R1, Ro] is called a preference system on A. We call A
consistent if there exists u : A — [0, 1] such that for all a, b, c,d € A:

(a,b) € Ry = u(a) > u(b)  (with = iff € Ig,).
((a,b),(c,d)) € R, = u(a) — u(b) > u(c) —u(d) (with = iff € Ig,).

The set of all representations u of A is denoted by ¢/4.
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Notation: Binary relation R has strict part Pr and indifference part Iz.

Let A denote a set of consequences. Let further

Ri C A x A be a binary relation on A

R, € Ry x Ry be a binary relation on R,

The triplet A = [A, R1, Ro] is called a preference system on A. We call A
consistent if there exists u : A — [0, 1] such that for all a, b, c,d € A:

(a,b) € Ry = u(a) > u(b)  (with = iff € Ig,).

((a,b),(c,d)) € R, = u(a) — u(b) > u(c) —u(d) (with = iff € Ig,).
The set of all representations u of A is denoted by ¢/4.
Interpretation of the components of A:

- (a,b) € Ry: “a is at least as desirable as b”

- ((a,b),(c,d)) € Ry: “exchanging b by a is at least as desirable as d by ¢”



Modelling the set M

The uncertainty about S is characterized by a credal set of probabilities:
M={reP:b, <Ea(fe) <befort=1,...,r}
where P denotes the set of all probability measures on (S,2°) and

- fi,...,fr: S — R are real-valued mappings and

- b, < be, £ =1,...,r are lower and upper expectation bounds.

Such M is a convex and finitely generated polyhedron with extreme points



Modelling the set M

The uncertainty about S is characterized by a credal set of probabilities:
M={reP:b, <Ea(fe) <befort=1,...,r}
where P denotes the set of all probability measures on (S,2°) and

- fi,...,fr: S — R are real-valued mappings and

- b, < be, £ =1,...,r are lower and upper expectation bounds.

Such M is a convex and finitely generated polyhedron with extreme points

— Very general uncertainty model capturing special cases such as:

Classical probability — Interval probability — Lower previsions — Linear partial
information — Neighbourhood models



Decision making based on ¢/, and M

Theory for optimal decision making based on the sets /4 and M as well as
efficient computation algorithms have been developed in:

‘Contents lss available at ScenceDirect

International Journal of Approximate Reasoning

Concepts for decision making under severe uncertainty
with partial ordinal and partial cardinal preferences -

fia

C. Jansen*, G. Schollmeyer, . Augustin

Methods for efficient elicitation of the underlying preference system and their
theoretical properties have been investigated in:

[ e———
International Journal of Approximate Reasoning
e

Information efficient learning of complexly structured
preferences: Elicitation procedures and their application to L—,J
decision making under uncertainty

C. Jansen”, H. Blocher, T. Augustin, G. Schollmeyer

Problem: All these models only work for state-independent preferences!



Today: State- preference systems

In many applications, the agent's preferences in a decision problem under
uncertainty can not be modeled independently of the true state of nature.

Prominent examples:

- Insurance science: Often, a policyholder’s preferences are modelled to
be dependent on her health status.

- Portfolio selection: The agent’s attitude towards risky choices (and
therefore indirectly the underlying preferences) are seen as depending
on some exogenous environment.



Basic Definitions |

We start by giving the fundamental definition of our

Let

As = [A,R3, R3] be a preference system for every state s € S, and

G CA®:={f:S — A} non-empty.

We call the pair
D=9, (As), o]
a decision system. We call D

state-independent if As = A, foralls,s’ € Sand

state-dependent otherwise.



Basic Definitions Il

Especially in the case of a state-dependent decision system, it is useful to
consider only utility functions that measure the utility on the

D= [g, (AS)SGS] is called commonly scalable if there exist with a.,a* € A
(a*,a) € R; A(a,a.) €R;
forallae Aands € S.
Further, D is called consistent if
Na, = {u €Ua, u(a) =0 A u(a*) = 1};& 0

for all states s € S.



Structural assumption (wlog)

Dealing with the state-independent parts:

We assume, without restricting generality of what follows, that for some £ €
{1,...m} there is a partition S := {Si,...,S¢} of S satisfying:

i) Foralld € {1,...,£} and all Si,,Si, € Sq it holds ,45H = As,z.
i) Forallc#de{1,...,¢} and all s, € Scand s;, € Sq it holds As, # As, .
i) Forc<de{1,...,¢},ifs;, € Scand s;, € Sq, then iy < 2.

We then denote by As, the preference system As for arbitrary s € Sq.



The criterion of (D, M)-dominance

Let
- D be commonly scalable and consistent and
- 7 be a probability measure on (S,2°) and

* U= (Ug)a=,.... be such that ug € Ny, foreachd =1,...,¢

The of an act X € G is the expression:
4
Emy(X) = Z(Zud {s}))
d=1 \'S€Sy

Let M be a convex and finitely generated credal set.

For X,Y € G, say that Y is (D, M)-dominated by X if
Etr,y(X) = Eqr,)(Y)

for every u := (Ug)d=1,... ¢ With ug € NAsd and every m € M. 10

.....



Remarks and special cases

If we have a state-independent DS...

- withM={r}and R, =10

— criterion reduces to (first-order) stochastic dominance

- .. with M = {x} and Ry and R, guaranteeing utility unique up to plts

— criterion reduces to comparing expected utility

1



Checking for (D, M)-dominance:

Now, let

- A =[A, R, R;] be a consistent decision system and

* O, Ak, € A such that (ax,,a) € Ry and (a,ax,) € R forall a € A.
Avector (wv,...,Vy) containing exactly the images of a utility function u € Na
is then describable by the system of linear (in-)equalities given through

® vy, =Tand v, =0,

e v; = v, for every pair (a;, a;) € Ig,,

e v, —Vv; > 0 for every pair (a;, a;) € Pg,,

e v, — Vv, =V, — Vg for every pair of pairs ((ar, a), (ap, dq)) € Iz, and

e Vi, — V| —Vp + Vg > 0 for every pair of pairs ((ar, ar), (ap, aq)) € Pr,.

Denote by A 4 the setof all (v, ..., v,) € [0,1]" satisfying these (in)equalities.



Checking for (D, M)-dominance: Linear Program

Let D be consistent and commonly scalable.
For X,Y € G, denote by x;, y; the unique iy, iy with X(s;) = a;, and Y(s;) = a;,.

For every fixed t € {1,...,K}, consider the

Zi;; <Z;"2+1(v3, —v)- 7r<t)({sj})) - min_ "
with constraints
(A,..., Vi) € A, foreveryd e {1,...,4}
and the conventions So = 0 and ¢4 = | Uf:O Sjl.
Denote by opt(t) the optimal value for t fixed. It then holds:

X>moa Y min{opt(t):te{1,...,/<}}20



Approximating the linear program

Challenge: The LPs have separate variables and constraints for each As, un-
der each S4 € S. This may produce high computational costs.

Idea: Approximate the LPs by grouping the preference systems under (in a
certain sense) similar states of nature.

How exactly? Find partitions V of S of which the partition S is a refinement:
For every element Sy € S there exists an element V € V such that Sy C V.
Then replace the LPs from before by

4

i( f (v _v‘y’/).ﬂ<r>({5}})>—> " min

with constraints
- (AL ) €A,y foreveryde{1,....r}
d
and, again, Vo = @ and pg = | UL, Vj|.

14



Different choices for the partition

Pattern clustering: Partition the state space by grouping preference systems
containing a predefined preference pattern.

Distance-based clustering: Partition the state space to groups of statess € S
with 'similar’ k3, where similarity is defined by some distance between pre-
orders and a threshold ¢ € (0, 1) bounding it from above.



A small example

Let A= {a.,b,c,d,a"} and consider the decision system

‘ S Sy S3
X1 d C b
X2 | a” @s

where

* Rt =Ry" = R = Ry are all induced by a*PgsdPgs CPgs bPgs A,
- R is induced by epq, Igs1 €ctlgs1 €dclgsr €axds
2 2 2
- R isinduced by epq, Pps €ctPys: €axdPps2 uc,
2 2 2

-+ R isinduced by ey, PR? ea*dPR;3 echR;3 ede.
Assume the uncertainty about S is described by the credal set

M ={r:7({s1}) <02 A 7({s2}) <0.2}. ;



A small example, continued

Three observations:
(1) As, uniquely specifies a us, € Na,, given by
(Us,(ax), us, (b), us, (€), us, (d), us,(@*)) = (0, 0.25,0.5,0.75, 7).

(2) As, restricts all us, € Na,, to satisfy us,(d) — us,(c) < 0.25.

(3) As, restricts all us, € Na,, to satisfy us,(b) — us,(a.) > 0.25.

Thus: Forany m € M, us, € Na,,, Us, € Na,, and us, € Na,, the expression
E(r,u)(X1) — Eqm,uy(X2)

can be computed by

—m(Us;(a7) = Usy(d)) = ma(Us, (d) = Us, (C)) + m3(s5 (b) — Uss () > 0.

<0.2:0.25 <0.2-0.25 >0.6:0.25

This gives X1 >(p, ) Xo.

An approximation under distance-based clustering yields the same. 17



Directions for future research

Some directions for future research are:

e Comparison of cluster techniques: Investigate which technique to use
in what type of concrete application example.

e Other approximation approaches: Utilize existing approximations for
the special case of two-monotone lower probabilities.

e Adapt other decision criteria: An adaptation of other criteria to the
state-dependent setting would certainly deserve further research.

e Real world application: Test the model and its approximations in real
world decision making problems.



