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Abstract. In this paper we present some first ideas for decision mak-
ing with agents whose preference system may depend on an uncertain
state of nature. Our main formal framework here are commonly scal-
able state-dependent decision systems. After giving a formal definition of
those systems, we introduce and discuss two criteria for defining optimal-
ity of acts, both of which are direct generalizations of classical decision
criteria under risk. Further, we show how our criteria can be naturally
extended to imprecise probability models. More precisely, we consider
convex and finitely generated credal sets. Afterwards, we propose linear
pogramming-based algorithms for evaluating our criteria and show how
the complexity of these algorithms can be reduced by approximations
based on clustering the preference systems under similar states. Finally,
we demonstrate our methods in a toy example.
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1 Introduction

In many applications, the agent’s preferences in a decision making problem under
uncertainty can not be modeled independently of the true state of nature. Promi-
nent examples for such applications can, e.g., be found in the field of insurance
science. Here, often a policyholder’s preferences are modelled to be dependent
on her health status as, e.g., being reliant on the help of other people may lead
to different preferences as being completely autonomous (see [3] for a very re-
cent work in this direction). Further examples can, e.g., be found in problems of
portfolio selection, where commonly the agent’s attitude towards risky choices
(and therefore indirectly the underlying preferences) are seen as depending on
some exogenous environment (see, e.g., [22] for a recent work).

In such situations, the decision maker’s preferences are called state-dependent :
The knowledge of the true state of nature might force the decision maker to com-
pletely (or partially) rearrange the ranking of the consequences different decisions
may lead to. Given their practical relevance, it is not surprising that many fun-
damental works have dealt with state-dependent preferences. For instance, one
can consult the classic sources [8] or [15, 16], but many more exist. See also [2]
for a modern reappraisal. Most of these works are in the classical Anscombe and
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Aumann framework of ‘preferences over horse lotteries’ (see [1]): Starting from a
preference relation on the domain of all horse lotteries, they derive ‘conditional’
preference relations for every state fixed and then say the original relation is
state-dependent whenever there exist distinct (non-null) states for which these
conditional relations differ (see, e.g., [9]).

In the present work, we choose a more direct and applied view on the notion of
state dependence. Instead of over horse lotteries, we model preferences directly
on a finite consequence set and assume that the uncertainty about the states
is externally given by an imprecise probability model. Moreover, under each
state we allow the agent to express also partial preferences with respect to both
the ordering itself and the strength of preferences. The practical evaluation of
consequences often relies on reference points external to the consequence itself
(see, e.g., [7] for impactful psychological research), and indeed these reference
points may also be related to other consequences. A quite prominent example for
such a setting is obtained by rigorously formalizing the notion of regret familiar
from classical decision theory: measuring the ”inappropriateness” of an action
in a particular state, as [14, p.59] originally had put it, is impossible ”unless
[...] state-contingent consequences can be specified” ([12, p. 810]), see also, for
instance, [17] on axiomatisations of the minimax regret principle and, e.g., [13]
for a recent application in the context of climate model uncertainty.

The paper is organized as follows: Section 2 discusses the required mathe-
matical definitions and concepts. After that, Section 3 introduces the notion of
state-dependent decision systems and proposes two classes of decision crtieria
for both the case of precise and imprecise probabilistic information about the
states. In Section 4, we first demonstrate how the proposed criteria can be eval-
uated by using linear optimization theory and then discuss different possibilities
for reducing the complexity of the obtained linear programs by grouping the
variables under ‘similar’ states. Section 5 illustrates the discussed concepts in a
toy example. Section 6 concludes the paper.

2 Preliminaries

We start by recalling our central concept for modelling a decision maker’s prefer-
ences, namely the concept of a preference system as introduced in [6]. The basic
idea here is very natural: the ordinal and the cardinal part of the preferences
are modeled by two separate pre-orders (i.e. transitive and reflexive binary re-
lations). The ordinal order is a pre-order on the set of consequences, while the
cardinal order formally corresponds to a pre-order on the ordinal order - con-
ceived as a set. Note that the following Definitions 1, 2 and 3 are (essentially)
taken from [6].

Definition 1. Let A be a non-empty set and let R1 ⊆ A×A denote a pre-order
on A. Moreover, let R2 ⊆ R1 × R1 denote a pre-order on R1. Then the triplet
A = [A,R1, R2] is called a preference system on A. The preference system
A′

= [A,R
′

1, R
′

2] is called sub-system of A if R
′

1 ⊆ R1 and R
′

2 ⊆ R2.
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To ensure that the two orders of a preference system are compatible and do not
contradict, a consistency criterion is introduced. Roughly speaking, a preference
system is consistent if there exists a utility function on the set of consequences
which represents both involved pre-orders simultaneously. As usual, we will use
the following notation: For a pre-order R ⊆ M ×M on a set M , we denote by
PR ⊆ M ×M its strict part1 and by IR ⊆ M ×M its indifference part2.

Definition 2. Let A = [A,R1, R2] be a preference system. Then A is said to be
consistent if there exists a function u : A → [0, 1] such that for all a, b, c, d ∈ A
the following properties hold:

i) If (a, b) ∈ R1, then u(a) ≥ u(b) with equality iff (a, b) ∈ IR1
.

ii) If ((a, b), (c, d)) ∈ R2, then

u(a)− u(b) ≥ u(c)− u(d)

with equality iff ((a, b), (c, d)) ∈ IR2
.

Every such function u is then said to (weakly) represent the preference system
A. The set of all (weak) representations u of A is denoted by UA.

For consistent preference systems whose ordinal order has minimal and maximal
elements, it may be useful to consider only utility functions that measure the
utility of consequences on the same scale. This is, for example, central for defining
an expected value generalized to preference systems.

Definition 3. Let A = [A,R1, R2] be a consistent preference system. Assume
there exist elements a∗, a

∗ ∈ A such that (a∗, a) ∈ R1 and (a, a∗) ∈ R1 for all
a ∈ A. Then the set

NA :=
{
u ∈ UA : u(a∗) = 0 ∧ u(a∗) = 1

}
is called the normalized representation set of A. Further, for a number
δ ∈ [0, 1), we denote by N δ

A the set of all u ∈ NA satisfying

u(a)− u(b) ≥ δ ∧ u(c)− u(d)− u(e) + u(f) ≥ δ

for all (a, b) ∈ PR1 and for all ((c, d), (e, f)) ∈ PR2 . Then, N δ
A is called the

normalized representation set of granularity δ of A.

3 State-dependent decision systems

We now come to the central concept of this paper, namely that of state-dependent
decision systems. The idea is very natural: Instead of a fixed preference system,
we now want to allow the decision maker’s preferences to be dynamic in the
states of nature of a decision problem under uncertainty.

1 Defined by: (m1,m2) ∈ PR ⇔ (m1,m2) ∈ R ∧ (m2,m1) /∈ R
2 Defined by: (m1,m2) ∈ IR ⇔ (m1,m2) ∈ R ∧ (m2,m1) ∈ R
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3.1 The basic model

We start by giving the fundamental definition. Note that for simplicity and to
avoid measure-theoretic problems, the setsA = {a1, . . . , an} and S = {s1, . . . , sm}
are assumed to be finite throughout the rest of the paper.

Definition 4. Let S denote some non-empty set of states of nature and A de-
note some non-empty set of consequences. For every s ∈ S, let As = [A,Rs

1, R
s
2]

be a preference system on A. For a non-empty subset G ⊆ AS := {f : S → A},
we call the pair

D =
[
G,
(
As

)
s∈S

]
a decision system. A decision system D is called state-independent if it holds
that As = As′ for all s, s

′ ∈ S. Otherwise, D will be called state-dependent.

Especially in the case of a state-dependent decision system, it is useful to consider
only utility functions that measure the utility on the same scale. In contrast to
non-dynamic preference systems, however, this requires a stronger assumption:
The maximal and minimal elements of the ordinal orders of all preference systems
involved must be independent of the state of the nature.

Definition 5. Let D =
[
G, (As)s∈S

]
be a decision system. Then D is called

commonly scalable if there exist elements a∗, a
∗ ∈ A such that (a∗, a) ∈ Rs

1

and (a, a∗) ∈ Rs
1 for all a ∈ A and s ∈ S, i.e. if there exist common maximal

and minimal elements which are independent of the state of nature. Further, for
δ ∈ [0, 1), D is called δ-consistent if N δ

As
̸= ∅ for all s ∈ S. Finally, D is called

consistent if it is 0-consistent.

Note that the definition of a state-dependent commonly scalable decision system
D =

[
G, (As)s∈S

]
does not rule out the possibility that there are states under

which the decision maker has coinciding preference systems. From now on we
assume, without restricting generality of what follows, that for some ℓ ∈ {1, . . .m}
there is a partition S := {S1, . . . , Sℓ} of S that satisfies the following properties:

i) For all d ∈ {1, . . . , ℓ} and all si1 , si2 ∈ Sd it holds Asi1
= Asi2

.
ii) For all c ̸= d ∈ {1, . . . , ℓ} and all si1 ∈ Sc and si2 ∈ Sd it holds Asi1

̸= Asi2
.

iii) For c < d ∈ {1, . . . , ℓ}, if si1 ∈ Sc and si2 ∈ Sd, then i1 < i2.

We then denote by ASd
the preference system As for arbitrary s ∈ Sd. Note that

this assumption simply ensures that the states of nature are already grouped in
classes containing coinciding preference systems.

3.2 Criteria for decision making

We will now consider two different types of decision criteria in state-dependent
decision systems: Criteria based on numerical representations of a generalized
expected value and those that select undominated elements of a generalized
stochastic dominance relation. For the first type of criterion, we first need to
define what is meant by expected value in our context.
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Definition 6. Let D =
[
G, (As)s∈S

]
be a commonly scalable and δ-consistent

decision system and let π denote a probability measure on (S, 2S). For X ∈ G,
we define the expressions

Lδ
π(X) = min

{
ℓ∑

d=1

( ∑
s∈Sd

uSd
(X(s)) · π({s})

)
: (uS1

, . . . , uSℓ
) ∈

ℓ
ą

d=1

N δ
ASd

}

Uδ
π(X) = max

{
ℓ∑

d=1

( ∑
s∈Sd

uSd
(X(s)) · π({s})

)
: (uS1

, . . . , uSℓ
) ∈

ℓ
ą

d=1

N δ
ASd

}
Then, the (possibly degenerated) interval

Eδ
π(X) = [Lδ

π(X), Uδ
π(X)]

is called the state-dependent expectation of X with respect to the prior dis-
tribution π and granularity δ.

In principle, there are many different criteria thinkable that are based on the
state-dependent expectations Eδ

π(X) of the different acts in X ∈ G. Here, we
want to stick with the most conservative one among them, namely the one taking
into account only the lower bound Lδ

π(X) of each of these intervals.

Definition 7. Let D =
[
G, (As)s∈S

]
be a commonly scalable and δ-consistent

decision system and let π denote a probability measure on (S, 2S). An act X∗ ∈ G
is called (D, π, δ)-maximin if Lδ

π(X
∗) ≥ Lδ

π(X) for all X ∈ G.
Some remarks on Definition 7: in the case of a state-independent decision sys-
tem, the criterion essentially reduces to the Dδ-maximin criterion as introduced
in [6, Definition 6 i)]. If further the then constant relations R1 and R2 satisfy the
axioms in [11, p. 147, Definition 1] and thus admit a cardinal utility represen-
tation that is unique up to positive linear transformations, the criterion reduces
to the principle of maximizing expected utility (note that of course in this case
it is implied that both relations R1 and R2 have to be complete).

The second type of criterion is based on a generalization of the concept of first
order stochastic dominance. The idea is first to define a partial order on the set of
available acts and then to call optimal those among them that are undominated
with respect to this relation. We start with defining the dominance relation.

Definition 8. Let D =
[
G, (As)s∈S

]
be a commonly scalable and consistent

decision system and let π denote a probability measure on (S, 2S). For an act
X ∈ G and a collection of functions u := (ud)d=1,...,ℓ such that it holds that
ud ∈ NASd

for each d = 1, . . . , ℓ, the expression

E(π,u)(X) =

ℓ∑
d=1

( ∑
s∈Sd

uSd
(X(s)) · π({s})

)
is called the (π, u)-expectation of X. Further, for two acts X,Y ∈ G, we say
that X (D, π)-dominates Y , abbreviated with X ≥(D,π) Y , if it holds that

E(π,u)(X) ≥ E(π,u)(X)
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for every u := (ud)d=1,...,ℓ with ud ∈ NASd
for each d = 1, . . . , ℓ. Finally, an

act X∗ ∈ G is called (D, π)-undominated if there is no act Y ∈ G such that
Y ≥(D,π) X

∗ but not X∗ ≥(D,π) Y , that is if X∗ is an undominated element of
the dominance relation ≥(D,π).

Some remarks on the dominance relation: First, it is immediate that for a state-
independent decision system in which, in addition, the cardinal relation R2 in-
volved is empty, classical stochastic dominance for partial orders is equivalent
to it. Further, it can be easily shown that for the case of a state-independent
decision system with constant, but not necessarily empty, R2, it reduces to the
order R∀∀ as defined in [6, p. 123] and also considered in [5, Definition 4 ii)].
Finally, one sees immediately that the dominance relation is a pre-order on G,
i.e., a reflexive and transitive, but not necessarily complete, binary relation.

3.3 Generalizing the criteria to imprecise probabilities

So far, we have limited our considerations to decision systems under precise
probabilities. In this section we want to show how the decision criteria discussed
so far can also be generalized most naturally to decision systems under imprecise
probabilities. Although different generalizations are often conceivable (analogous
as in the case with cardinal utility, see, e.g., [21, 18]), we restrict ourselves to one
particular generalization each for reasons of simplicity and space. As a gener-
alized uncertainty model, we consider convex and finitely generated credal sets
M, i.e., convex sets of probability measures on (S, 2S) with a finite number of
extreme points collected in

E(M) = {π(1), . . . π(K)}.

We start by generalizing (D, π, δ)-maximin. As already mentioned, many dif-
ferent generalizations are plausible, depending on the decision maker’s attitude
towards ambiguity. Consistent with our previous restriction to the lower bound,
we will again examine only the absolute ambiguity-averse variant.

Definition 9. Let D =
[
G, (As)s∈S

]
be a commonly scalable and δ-consistent

decision system and let M be a convex and finitely generated credal set on (S, 2S).
An act X∗ ∈ G is called (D,M, δ)-maximin if

Lδ
(D,M)(X

∗) := min
π∈M

Lδ
π(X

∗) ≥ min
π∈M

Lδ
π(X) =: Lδ

(D,M)(X)

for all X ∈ G.
This decision criterion also has a well-known special case: If the underlying deci-
sion system is state-independent and the then constant relations of the preference
system guarantee a unique utility representation up to for positive linear trans-
formations (see above), then the criterion reduces to the Γ -maximin criterion
known from decision making under imprecise probabilities (see, e.g., [18]).

Also the dominance relation≥(D,π) from Definition 8 can naturally be adapted
to the case of imprecise probabilities by demanding the involved acts to be in
relation for all probability measures from the underlying credal set.
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Definition 10. Let D =
[
G, (As)s∈S

]
be a commonly scalable and consistent

decision system and let M be a convex and finitely generated credal set on (S, 2S).
For acts X,Y ∈ G, we say X (D,M)-dominates Y , abbreviated with X ≥(D,M)

Y , if it holds that X ≥(D,π) Y for every π ∈ M. Further, an act X∗ ∈ G is called
(D,M)-undominated if X∗ is (D, π)-undominated for every π ∈ M.

4 Algorithms for determining optimal acts

In this section we show how optimal acts can be determined with respect to
the discussed decision criteria using linear optimization as has been extensively
done before in the context of decision making with imprecise probabilities (see,
e.g., [20, 10, 4, 19]). For this purpose, we first discuss two basic algorithms for
the optimization of the two criteria discussed and then demonstrate how the
complexity of these algorithms can be reduced by suitable approximations. The
idea of the approximation is to group the preference systems under certain, in a
certain sense similar, states and then to consider only decision variables for each
cluster of states in the optimization. All discussed optimization problems are
given directly for the criteria under imprecise probabilities, since these contain
the criteria under precise probabilities in each case as a special case.

4.1 Two basic linear programs

We start with the basic linear program for computing the criterion value of
any fixed act with respect to the (D,M, δ)-maximin criterion. For this let A =
[A,R1, R2], with A = {a1, . . . , an}, be a consistent preference system for which
there exist elements ak1 , ak2 ∈ A such that (ak1 , a) ∈ R1 and (a, ak2) ∈ R1 for
all a ∈ A. The property of a vector (α1, . . . , αn) to contain exactly the images of
a utility function u : A → [0, 1] from the set N δ

A is then describable via a system
of linear (in-)equalities.

More precisely, next to the equalities uk1
= 1 and uk2

= 0, for every pair
(ai, aj) ∈ R1 we receive the linear inequality ui−uj ≥ δ and for every pair of pairs
((ak, al), (ap, aq)) ∈ R2, we receive the linear inequality uk − ul − up + uq ≥ δ.
Denote by ∆δ

A the set of all vectors (α1, . . . , αn) ∈ [0, 1]n satisfying all these
(in)equalities. Equipped with this, we receive the following proposition which
can be proved by slightly adapting the proof of [6, Prop. 3].

Proposition 1. Let D =
[
G, (As)s∈S

]
be a commonly scalable and δ-consistent

decision system with common maximal and minimal elements ak1
, ak2

∈ A, re-
spectively, and let A = {a1, . . . , an} and S = {s1, . . . sm}. Let M be a convex
and finitely generated credal set on (S, 2S). For X ∈ G, denote by wj the unique
i ∈ {1, . . . , n} with X(sj) = ai. For every fixed t ∈ {1, . . . ,K}, consider the
linear program

ℓ−1∑
d=0

(
cd+1∑

j=cd+1

vdwj
· π(t)({sj})

)
−→ min

(v1
1 ,...,v

1
n,...,v

ℓ
1,...v

ℓ
n)
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with constraints (v11 , . . . , v
1
n, . . . , v

ℓ
1, . . . v

ℓ
n) ∈ ∆δ

ASd
for every d ∈ {1, . . . , ℓ} and

the conventions S0 = ∅ and cd = | ∪d
j=0 Sj |. Denote by opt(t) the optimal value

of the linear program with t fixed. It then holds:

Lδ
(D,M)(X) = min

{
opt(t) : t ∈ {1, . . . ,K}

}
We now turn to the basic linear program for checking (D,M)-dominance. The
proposition can be proven by slightly modifying the proof of [6, Prop. 5 i)].

Proposition 2. Consider the same situation as in Proposition 1. For X,Y ∈ G,
denote by xj and yj the unique iX , iY ∈ {1, . . . , n} such that X(sj) = aiX and
Y (sj) = aiY hold, respectively. For every fixed t ∈ {1, . . . ,K}, consider the linear
optimization problem

ℓ−1∑
d=0

(
cd+1∑

j=cd+1

(vdxj
− vdyj

) · π(t)({sj})

)
−→ min

(v1
1 ,...,v

1
n,...,v

ℓ
1,...v

ℓ
n)

with constraints (v11 , . . . , v
1
n, . . . , v

ℓ
1, . . . v

ℓ
n) ∈ ∆0

ASd
for every j ∈ {1, . . . ,m} and

the conventions S0 = ∅ and cd = | ∪d
j=0 Sj |. Denote by opt(t) the optimal value

of the linear program with t fixed. It then holds:

X ≥(D,M) Y ⇔ min
{
opt(t) : t ∈ {1, . . . ,K}

}
≥ 0

We end the paragraph with two brief comments: First, to check whether an
act X is undominated, Proposition 2 can simply be applied several times: If
Y ≥(D,M) X does not hold for all acts Y ∈ G \ {X}, then one can directly
infer the undominatedness of X. Second, both propositions can also be applied
to precise probability measures. In this case, one simply chooses the credal set
M = {π} as a singleton consisting only of the precise probability in question.
The propositions then simplify considerably, since in each case only one instead
of a set of linear programs has to be solved.

4.2 Approximating the linear programs by grouping the states

The linear programs from Propositions 1 and 2 possess separate variables and
constraints for the preference system under every state of nature of the decision
system. This may produce very complex optimization tasks if the considered
decision problem is large. In this section, we will look at how to significantly
reduce both the number of variables and the number of constraints without sac-
rificing too much accuracy. The main idea is to approximate the discussed basic
algorithms by grouping the preference systems under in a certain sense similar
states of nature. However, before turning to the approximations just mentioned,
let us first note a fundamental property of preference and, as a consequence, also
decision systems. It follows by observing that the intersection of pre-orders is
again a pre-order that preserves minimal and maximal elements.
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Proposition 3. Let D =
[
G, (As)s∈S

]
be a commonly scalable decision system

with state space S and let V be some partition of S. Then it holds that

DV :=
[
G, (AV

s )s∈S

]
is a commonly scalable decision system, where for every V ∈ V and s ∈ V :

AV
s :=

[
A,
⋂

d∈V
Rd

1,
⋂

d∈V
Rd

2

]
.

Note that this implies AV
s1 = AV

s2 for s1, s2 ∈ V ∈ V, i.e. the preference systems
are constant within the partition classes.

In what follows we are interested in partitions V of the state space S of which
the partition S already discussed is a refinement : For every element Sd ∈ S there
exists an element V ∈ V such that Sd ⊆ V . We denote this by S#V and also
call V a coarsening of S in this case.

Let us assume that we already found a suitable partition V = {V1, . . . , Vr} of
the state space, where r ≤ ℓ and S#V. Similar as already done for S, we assume
without loss of generality that for c < d ∈ {1, . . . , r}, if si1 ∈ Vc and si2 ∈ Vd,
then i1 < i2. The idea to approximate our basic algorithms by less complex,
but preferably information-preserving surrogate algorithms is then very simple:
Instead of considering separate variables and constraints for each preference
system under each state, we only consider separate variables and constraints for
each element of the partition provided with the common preference system.

Technically, this is achieved by replacing the series of linear programming
problems from Proposition 1 by the series of problems (for every t ∈ {1, . . . ,K})

r−1∑
d=0

(
pd+1∑

j=pd+1

vdwj
· π(t)({sj})

)
−→ min

(v1
1 ,...,v

1
n,...,v

r
1 ,...v

r
n)

with constraints (v11 , . . . , v
1
n, . . . , v

r
1, . . . v

r
n) ∈ ∆δ

AV
Vd

for every d ∈ {1, . . . , r} and

the conventions V0 = ∅ and pd = | ∪d
j=0 Vj | and by, respectively, replacing the

series of linear programming problems from Proposition 2 by the series of linear
programming problems (for every t ∈ {1, . . . ,K})

ℓ−1∑
d=0

(
pd+1∑

j=pd+1

(vdxj
− vdyj

) · π(t)({sj})

)
−→ min

(v1
1 ,...,v

1
n,...,v

r
1 ,...v

r
n)

with constraints (v11 , . . . , v
1
n, . . . , v

r
1, . . . v

r
n) ∈ ∆0

AV
Vd

for every d ∈ {1, . . . , r} and,

again, V0 = ∅ and pd = |∪d
j=0 Vj |. As the approximation quality heavily depends

on it, the partition should be chosen in an information-preserving manner.

4.3 Different choices for the partition

So far, we have restricted the partition V of the state space only in that it had to
be a coarsening of the partition S. In this section, we will now briefly discuss two
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concrete choices for V that have other desirable properties besides this minimal
requirement. For that, assume that (As)s∈S denotes the family of preference
systems corresponding to a (potentially state-dependent) decision system.

Pattern clustering: The first possibility for a partition of the state space is to
group preference systems that contain a certain predefined preference pattern.
Let P1, . . . ,Pz, where z < ℓ, denote pairwisely conflicting3 preference systems
on A. Then, a partition Vpa in at most z + 1 partition classes is obtained by

Vpa =
{
{s ∈ S : Pt ⪯ As} : t = 1, . . . , z

}
∪
{
{s ∈ S : Pt ⪯̸ As for all t}

}
,

where for preference systems B = [A,RB
1 , R

B
2 ] and C = [A,RC

1 , R
C
2 ] we denote

by B ⪯ C that PRB
1
⊆ PRC

1
, IRB

1
⊆ IRC

1
, PRB

2
⊆ PRC

2
and IRB

2
⊆ IRC

2
hold.

Distance-based clustering: Another possibility for finding a partition of the
state space is to group states s ∈ S whose associated ordinal relations Rs

1 are
not ‘too far’ away from each other: As described in [23, Algorithm 1], for some
distance d between pre-orders (like, e.g., the normalized cardinality of their sym-
metric difference), one first picks a threshold ξ ∈ (0, 1) and computes the dis-
tances d(Rs

1, R
s∗

1 ) for all s ̸= s∗ ∈ S. Afterwards, we put such states in the same
cluster between which there exists a ‘path of ordinal relations’ with distances
lower or equal than ξ. This gives a partition of S into some number of clus-
ters C1, . . . , Cb. If one now extends the distance function to clusters by setting
D(Cl1 , Cl2) := min{d(Rs

1, R
s∗

1 ) : s ∈ Cl1 , s
∗ ∈ Cl2}, one can repeat this step until

the partition does no longer change.

5 An illustrative toy example

As an illustrative example, we consider the simple commonly scalable decision
system given in Table 1 with only two acts taking values in the consequence set
A = {a∗, b, c, d, a∗}, where a∗ and a∗ denote the common minimal and maximal
elements of A, respectively. Under each state s ∈ {s1, s2, s3}, we assume that Rs

1

s1 s2 s3

X1 d c b
X2 a∗ d a∗

Table 1. A compact representation of the decision system.

is given by the transitive hull of of the chain a∗PRs
1
dPRs

1
cPRs

1
bPRs

1
a∗. Thus, the

ordinal part of the preferences is state independent. In contrast, the cardinal part
of the preferences does depend on the state of nature: For a1, a2 ∈ A, denote

3 For d1 ̸= d2 ∈ {1, . . . , z} we have UPd1
∩ UPd2

= ∅. This makes Vpa a partition.
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by ea1a2
the pair (a1, a2). Then, under s1 the cardinal part Rs1

2 is given as
the transitive hull of eba∗IRs1

2
ecbIRs1

2
edcIRs1

2
ea∗d, under s2 the cardinal part Rs2

2

is given as the transitive hull of eba∗PR
s2
2
ecbPR

s2
2
ea∗dPR

s2
2
edc and under s3 the

cardinal part Rs3
2 is given as the transitive hull of eba∗PR

s3
2
ea∗dPR

s3
2
ecbPR

s3
2
edc.

We make the following three observations: (1) The preference system As1

uniquely specifies a utility function us1 ∈ NAs1
, which is given by

(us1(a∗), us1(b), us1(c), us1(d), us1(a
∗)) = (0, 0.25, 0.5, 0.75, 1).

(2) The preference system As2 restricts all utility functions us2 ∈ NAs2
to satisfy

the inequality us2(d)−us2(c) ≤ 0.25. (3) The preference system As3 restricts all
utility functions us3 ∈ NAs3

to satisfy the inequality us3(b)− us3(a∗) ≥ 0.25.
Now, assume the uncertainty about the states of nature is characterized by

the credal set M =
{
π : π({s1}) ≤ 0.2 ∧ π({s2}) ≤ 0.2

}
. Then, for arbitrary

π ∈ M, us1 ∈ NAs1
, us2 ∈ NAs2

and us3 ∈ NAs3
the expression E(π,u)(X1) −

E(π,u)(X2) can be computed by

−π1(us1(a
∗)− us1(d))︸ ︷︷ ︸

≤0.2·0.25

−π2(us2(d)− us2(c))︸ ︷︷ ︸
≤0.2·0.25

+π3(us3(b)− us3(a∗))︸ ︷︷ ︸
≥0.6·0.25

> 0.

Thus, as the probability and the utility are arbitrary, this inequality demon-
strates that X1 ≥(D,M) X2. An approximation under distance-based clustering
yields the same: Since the ordinal relations are state-independent, any distance
produces only one cluster {S}. Thus, we obtain a state-independent decision sys-
tem and the intersection of Rs1

2 , Rs2
2 and Rs3

2 contains (eba∗ , edc) and (eba∗ , ea∗d).
Thus, the above inequality still holds since π1 + π2 < π3 for all π ∈ M.

6 Outlook

In this paper, we have presented some initial ideas on decision theory with state-
dependent preference systems. Besides the conceptual foundation and the dif-
ferentiation from existing notions of state-dependence, we have focused on the
computation of the presented decision criteria. We proposed different linear pro-
grams and showed how they can be approximated by less complex ones if the
states are clustered appropriately. While we think that our paper gives a solid
formal basis for decision making with state-dependent preference systems, we are
also aware there is still a lot left open for future research. Example directions
could be to systematically investigate which cluster techniques work best and to
apply the concepts developed in this paper to real world data.
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