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Decision Theory in a Nutshell



Classical Decision Theory

Informal description of the model:

• An agent has to choose among different acts X from a set G.

• The consequence that choosing X yields depends on which state of
nature s from a set S is the true one.
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Classical Decision Theory

Informal description of the model:

• An agent has to choose among different acts X from a set G.

• The consequence that choosing X yields depends on which state of
nature s from a set S is the true one.

Formal description of the model:

• Let A denote some non-empty set of consequences.

• Each act X corresponds to a mapping X : S→ A.

• The set G is a subset of AS = {X : S→ A}.

Goal: Determining a choice function

ch : 2G → 2G with ch(D) ⊆ D for all D ∈ 2G

that best possibly utilizes the available information.
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Statistical Decision Theory as a Special Case

Additional information: Data Z : Ω → Z with Z ∼ Ps given that s ∈ S is the
true state, i.e. S parametrizes our model.

4



Statistical Decision Theory as a Special Case

Additional information: Data Z : Ω → Z with Z ∼ Ps given that s ∈ S is the
true state, i.e. S parametrizes our model.

Induced Statistical Decision Problem:

• Instead of directly choosing acts X from G, we now consider decision
functions d : Z → G from a suitable D ⊂ GZ .

• The choice of d ∈ D under s ∈ S (i.e. Z ∼ Ps) is then evaluated by an
element C(d, Ps) ∈ A∗ using the distribution information.

• Every d ∈ D can then be identified with a mapping
Xd : S→ A∗ , s 7→ C(d, Ps)

yielding again a data-free decision problem G∗ = {Xd : d ∈ D}.
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Statistical Decision Theory as a Special Case

Additional information: Data Z : Ω → Z with Z ∼ Ps given that s ∈ S is the
true state, i.e. S parametrizes our model.

Induced Statistical Decision Problem:

• Instead of directly choosing acts X from G, we now consider decision
functions d : Z → G from a suitable D ⊂ GZ .

• The choice of d ∈ D under s ∈ S (i.e. Z ∼ Ps) is then evaluated by an
element C(d, Ps) ∈ A∗ using the distribution information.

• Every d ∈ D can then be identified with a mapping
Xd : S→ A∗ , s 7→ C(d, Ps)

yielding again a data-free decision problem G∗ = {Xd : d ∈ D}.

Choice function: Use elements [C(d, s)]d,s to construct a choice function that
selects optimal decision functions (tests, estimators, classifiers,...).
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Constructing Choice Functions for Decision Making

Classical assumptions: (e.g., [von Neumann et al., 1944, Savage, 1954]))

(I) The agent’s preferences among the elements of A are characterized by a
cardinal utility function u : A→ R.

(II) The uncertainty among the states from S is described by some classical
probability measure π.

Under (I) and (II), there is strong consensus for comparing acts X and Y by
comparing their Expected Utilities Eπ(u ◦ X) and Eπ(u ◦ Y).
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Constructing Choice Functions for Decision Making

Classical assumptions:

(I) The agent’s preferences among the elements of A are characterized by a
cardinal utility function u : A→ R.

(II) The uncertainty among the states from S is described by some classical
probability measure π.

Under (I) and (II), there is strong consensus for comparing acts X and Y by
comparing their Expected Utilities Eπ(u ◦ X) and Eπ(u ◦ Y).

Standard Choice Function:

This induces a choice function by setting, for all D ∈ 2G ,

chu,π(D) =
{
Y ∈ D : Eπ(u ◦ Y) ≥ Eπ(u ◦ X) for all X ∈ D

}
,

i.e., by choosing that acts from G that maximize expected utility.
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Weakly structured Information



Maximizing Expected Utility?

Problem: Both (I) and (II) require strong axiomatic assumptions.

These assumptions explicitly dismiss the following settings:

• Purely ordinal or partial preferences
(e.g. random variables with locally varying scale of measurement).
(e.g., [Seidenfeld et al., 1995, Nau, 2006]))

• Agents with partial probabilistic beliefs
(e.g. Robust Bayesian analysis, uncertainty quantification).
(e.g., [Kikuti et al., 2011, Shaker and Hüllermeier, 2021]))

• Problems of group decision making
(e.g. ensemble methods).
(e.g., [Bradley, 2019]))

These are highly relevant situations to investigate!
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Relaxing (I) and (II): Weakly structured Information

Two different sources of complexity:
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bility on S, we still can work with the setM of all probabilities compatible
with the information.
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Modelling U : Preference Systems I

Notation: Binary relation R has strict part PR and indifference part IR.

Preference system & Consistency
Let A denote a set of consequences. Let further

• R1 ⊆ A× A be a binary relation on A

• R2 ⊆ R1 × R1 be a binary relation on R1

The triplet A = [A,R1,R2] is called a preference system on A.

We call A consistent if there is u : A→ [0, 1] with for all a, b, c,d ∈ A:

(a, b) ∈ R1 ⇒ u(a) ≥ u(b) (with = iff ∈ IR1 ).

((a, b), (c,d)) ∈ R2 ⇒ u(a)− u(b) ≥ u(c)− u(d) (with = iff ∈ IR2 ).

The set of all representations u of A is denoted by UA.

Interpretation of the components of A:
• (a, b) ∈ R1: “a is at least as desirable as b”

• ((a, b), (c,d)) ∈ R2: “exchanging b by a is at least as desirable as d by c”
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Modelling U : Preference Systems II

Normalization & Regularization
Let A = [A,R1,R2] be consistent and assume there exist a∗, a∗ ∈ A such
that (a∗, a) ∈ R1 and (a, a∗) ∈ R1 for all a ∈ A. Then

NA :=
{
u ∈ UA : u(a∗) = 0 ∧ u(a∗) = 1

}
is called the normalized representation set of A.

Further, for δ ∈ [0, 1), we denote by N δ
A the set of all u ∈ NA satisfying

u(a)− u(b) ≥ δ ∧ u(c)− u(d)− u(e) + u(f) ≥ δ

for all (a, b) ∈ PR1 and for all ((c,d), (e, f)) ∈ PR2 .

We call A δ-consistent if N δ
A 6= ∅.
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ModellingM: Credal sets

Credal set
The uncertainty among the elements of S is described by a polyhedral
credal set of probability measures of the form

M =
{
π ∈ P : bℓ ≤ Eπ(fℓ) ≤ bℓ for ℓ = 1, . . . , r

}
where P is the set of all probability measures on (S, σ(S)) and

• f1, . . . , fr : S→ R are real-valued mappings and

• bℓ ≤ bℓ, ℓ = 1, . . . , r, are lower and upper expectation bounds.

Description: SuchM is a convex polyhedron with extreme points

E(M) = {π(1), . . . π(K)}

Special cases: Classical probability – Interval probability – Lower previsions –
Linear partial information – Neighbourhood models

(e.g., [Levi, 1974, Walley, 1991, Weichselberger, 2001, Augustin et al., 2014]))
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Generalizing the Choice Function

Theory for optimal decision making based on the sets UA and M as well as
efficient computation algorithms have been developed in:

We focus on only one decision criterion from the paper:

(A,M, δ)-dominance
Let A = [A,R1,R2] be δ-consistent andM a credal set on (S, σ(S)). Define

F(A,S) :=
{
X ∈ AS : u ◦ X is σ(S)-BR([0, 1])-measurable for all u ∈ UA

}
.

For X, Y ∈ F(A,S), we say that Y is (A,M, δ)-dominated by X if

Eπ(u ◦ X) ≥ Eπ(u ◦ Y)

for all u ∈ N δ
A and π ∈ M. Denote the induced relation by ≥(A,M,δ).
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Some Special Cases

The relation ≥(A,M,δ) has some prominent special cases.

For δ = 0 and ...

• ... andM = {π} and R2 = ∅

→ Reduction to (first-order) stochastic dominance
(see, e.g., [Mosler and Scarsini, 1991]))

• ... andM = {π} and R1 and R2 guaranteeing utility unique up to plts

→ Reduction to comparing expected utilities.
(see, e.g., [Krantz et al., 1971]))

• ... and R1 and R2 guaranteeing utility unique up to plts

→ Reduction to Bewley dominance.
(see, e.g., [Troffaes, 2007]))
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Checking for (D,M, δ)-dominance: Preparation

Now, let

• A = [A,R1,R2] be a δ-consistent decision system,

• A = {a1, . . . , an}, S = {s1, . . . , sm}, and

• ak1 , ak2 ∈ A such that (ak1 , a) ∈ R1 and (a, ak2) ∈ R1 for all a ∈ A.

A vector (v1, . . . , vn) containing exactly the images of a utility function u ∈ N δ
A

is then describable by the system of linear (in-)equalities given through

• vk1 = 1 and vk2 = 0,

• vi = vj for every pair (ai, aj) ∈ IR1 ,

• vi − vj ≥ δ for every pair (ai, aj) ∈ PR1 ,

• vk − vl = vp − vq for every pair of pairs ((ak, al), (ap, aq)) ∈ IR2 and

• vk − vl − vp + vq ≥ δ for every pair of pairs ((ak, al), (ap, aq)) ∈ PR2 .

Denote by∇δ
A the set of all (v1, . . . , vn) ∈ [0, 1]n satisfying these (in)equalities.
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Under finitely many consequences and states...

...the set of admissible utilities is describable 
        by finitely many linear constraints.



Checking for (A,M, δ)-Dominance: Algorithm

Theorem
Consider the same situation as described above.

For Xi, Xj ∈ G and t ∈ {1, . . . , K}, we consider the linear program

n∑
ℓ=1

vℓ · [π(t)(X−1
i ({aℓ}))− π(t)(X−1

j ({aℓ}))] −→ min
(v1,...,vn)∈Rn

with constraints (v1, . . . , vn) ∈ ∇δ
A.

Denote by optij(t) the optimal value of this programming problem.

It then holds:

Xi ≥(A,M,δ) Xj ⇔ min{optij(t) : t = 1, . . . , K} ≥ 0.
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Project I: Elicitation



Efficient Elicitation of Preference Systems
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Efficient Elicitation of Preference Systems

Important question: Similar as in classical utility theory, the question of how
to receive an agent’s preference system in practice is of vast importance!

Idea: Design efficient elicitation strategies for preference systems.

Challenges:

• How exactly?

• What does efficiency mean in this context?

These questions are addressed in the paper:
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Outline of the Paper

Goal: Elicit (the relevant parts of) an agent’s preference system
A∗ = [A,R∗

1 ,R∗
2 ]

by asking as few as possible ranking questions about R∗
1 .

Focus today:

Procedure 2: Collecting labels of preference strength.

→ Label elicitation
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A∗ = [A,R∗

1 ,R∗
2 ]

by asking as few as possible ranking questions about R∗
1 .

Two different approaches are considered:

Procedure 1 utilizes the agent’s consideration times.

Procedure 2 collects labels of preference strength.

Main contributions of the paper:

(I) Methods for eliciting A by only asking ranking questions about R1.

(II) Data-driven guidance of elicitation with previous user experience.

(III) Utilizing elicitation methods for information efficient decision
making between acts X : S→ A taking values in A.

Focus today:

Procedure 2: Collecting labels of preference strength.

→ Label elicitation

16



Outline of the Paper

Focus today:

Procedure 2: Collecting labels of preference strength.

→ Label elicitation

16



Procedure 2: Label elicitation

Setup: Agent assigns a label ℓijr ∈ Lr := {n, c, 0, 1, . . . , r} to every (ai, aj) by
some labelling function ℓr : A× A→ Lr:

n : non-comparable
c : strict preference of unknown strength
0 : indifferent
1, . . . , r : strict preference of increasing strength

Label elicitation
Input: A = {a1, . . . , an}; R1 = ∅; number of labels r;
Output: A = [A,R1,R2];
Procedure: Present all pairs (ai, aj) ∈ A× A.

i) If ℓijr ∈ Lr \ {n, 0}, set R1 = R1 ∪ {(ai, aj)}.

ii) If ℓijr = 0, set R1 = R1 ∪ {(ai, aj), (aj, ai)}.

iii) If ℓijr = n, set R1 = R1.

Define R2 by setting ((ai, aj), (ak, al)) ∈ R2 :⇔ ℓijr > ℓklr ∨ ℓijr = ℓklr = 0
17



Procedure 2: Assumptions

Assumption 1

i) (ai, aj) ∈ IR∗1 ⇔ ℓijr = 0

ii) (ai, aj) ∈ PR∗1 ⇔ ℓijr ∈ Lr \ {n, 0} ∧ ℓjir = n

iii) (ai, aj) ∈ CR∗1 ⇔ ℓijr = ℓjir = n

Assumption 2
For all (ai, aj), (ak, al) ∈ R∗

1 the following holds:

i) ℓijr > ℓklr ⇒ ((ai, aj), (ak, al)) ∈ PR∗2
ii) ℓijr = ℓklr = 0 ⇒ ((ai, aj), (ak, al)) ∈ IR∗2
iii) ℓijr = c ∨ ℓklr = c ⇔ ((ai, aj), (ak, al)) ∈ CR∗2

Assumption 3
For all ((ai, aj), (ak, al)) ∈ PR∗2 the statement ℓ

ij
r = ℓklr = x /∈ {0,n, c} implies

that {1, . . . , r} ⊂ ℓr
(
A× A

)
. 18
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ordinal part is reported truthfully

cardinal part is reported best possibly

labels are interpreted purely ordinal



Procedure 2: Findings

Theorem
The following two statements hold true:

i) If, for some r ∈ N, ℓr : A × A → Lr satisfies Assumptions 1 and 2, then
Procedure 2 produces a sub-system of A∗.

ii) There exists r0 ∈ N such that if ℓr0 : A × A → Lr0 satisfies Assump-
tions 1, 2 and 3, then Procedure 2 produces the true A∗.

Challenge: Although the Theorem guarantees that Procedure 2 reproducesA∗

for some r∗, labelling may be too demanding if r∗ is large.

Solution: Use a relatively small r and restart elicitation on pairs with equal
label. Stop as soon as you know that equal labels originate from indifference.
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Procedure 2: Hierarchical version

Graphical intuition:

20



Hierarchical version: Findings

For the hierarchical version of label elicitation to work, we need to assume
that the agent is able to adapt the labelling function to arbitrary subsets.

Formally, we arrive at:

Assumption 4
For every N ⊆ A× A the labels on the restricted set of pairs N are given
w.r.t. a labelling function ℓ(N,r) : N→ Lr satisfying Assumptions 1, 2 and 3.

This indeed allows the following Proposition:

Theorem
Let Assumption 4 hold true. For n = |A| consequences and r ≥ 2 labels, the
hierarchical version of Procedure 2 terminates in A∗ after at most

max{1, d n2−r
r−1 e+ 1}

elicitation rounds.

21
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Application to decision making under uncertainty

We now return to decision under uncertainty:

• Consider the decision problem G under uncertainty modelM.

• Suppose A∗ is elicited by either Procedure 1 or 2 (or some variant).

• Let A1,A2, . . . be the preference system after elicitation step 1, 2, . . . .

Theorem
Let the assumptions of the used procedure be satisfied. Then, for any k :

X ∈ chAk,M(G) ⇒ X ∈ chA∗,M(G)

Here:

chAk,M(G) :=
{
Y ∈ G : ∀X ∈ G, u ∈ UA, π ∈ M it holds Eπ(u ◦ Y) ≥ Eπ(u ◦ X)

}
.

Why is this good?

If an act is optimal w.r.t. the preference system Ak elicited so far, we can con-
clude it is optimal w.r.t. the true preference system A∗.

22
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A small example

Consider the following decision problem:

s1 s2 s3 s4

X1 a8 a5 a2 a3
X2 a7 a6 a4 a1

Decision problem

a1

a2a3

a5

a6

a8

a7

a4

X2

X1

b

b s1

s2

s3

s4 s1

s2

s3

s4

Hasse diagram of R∗1

R∗
2 is the transitive hull of (where eij := (ai, aj)):

e31PR∗2 e52PR∗2 e74PR∗2 e21IR∗2 e64IR∗2 e42IR∗2 e86PR∗2 e87PR∗2 e53PR∗2 e75PR∗2 e65PR∗2 e43

M = {π} with π the uniform distribution.
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A small example, continued

Procedure 2 with r = 5 is applied and the first four steps look as follows:
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A small example, continued

Procedure 2 with r = 5 is applied and the first four steps look as follows:

Step Pair Label

1 (a8, a7) ℓ875 = 2
2 (a6, a5) ℓ655 = 1
3 (a3, a1) ℓ315 = 3
4 (a4, a2) ℓ425 = 2

Then, for every u ∈ UA4 (where ui := u(ai)):

4 · (Eπ(u◦X1)−Eπ(u◦X2)) = (u8 − u7)− (u6 − u5)︸ ︷︷ ︸
>0, since (e87,e65)∈PR2

+(u3 − u1) + (u4 − u2)︸ ︷︷ ︸
>0, since (e31,e42)∈PR2

> 0
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Thus X1 ∈ chA4,M(G).
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+(u3 − u1) + (u4 − u2)︸ ︷︷ ︸
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Thus X1 ∈ chA4,M(G).

Thus X1 ∈ chA∗,M(G) by our Theorem.
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A small example, continued

Procedure 2 with r = 5 is applied and the first four steps look as follows:

Step Pair Label

1 (a8, a7) ℓ875 = 2
2 (a6, a5) ℓ655 = 1
3 (a3, a1) ℓ315 = 3
4 (a4, a2) ℓ425 = 2

Then, for every u ∈ UA4 (where ui := u(ai)):

4 · (Eπ(u◦X1)−Eπ(u◦X2)) = (u8 − u7)− (u6 − u5)︸ ︷︷ ︸
>0, since (e87,e65)∈PR2

+(u3 − u1) + (u4 − u2)︸ ︷︷ ︸
>0, since (e31,e42)∈PR2

> 0

Thus X1 ∈ chA4,M(G).

Thus X1 ∈ chA∗,M(G) by our Theorem.

!! We concluded that X1 is optimal by asking four simple ranking questions. !!

24



There’s more in the Paper!

Beyond the concepts just shown, we ...

• ... introduced a second elicitation scheme based on consideration times.

• ... gave more efficient versions of our algorithms based on ...

1. ... purely order-theoretic considerations, amd

2. ... data-driven elicitation with previous user experience..

Promising lines of future research:

• Improving prediction of promising pairs.

• Explicitly incorporating the choice function into the prediction.

• Mixing hierarchical and non-hierarchical procedures.
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Project II: Statistical Applications



Comparing Classifiers by Generalized Stochastic Dominance

26



Comparing Classifiers by Generalized Stochastic Dominance

Question of interest: How to utilize our decision-theoretical approach for
comparing classifiers under multiplicity of quality criteria and data sets?

Setup: Let

• D denote the set of all relevant data sets,

• C denote the set of all relevant classifiers,

•
(
ϕi : C × D → Qi

)
i∈{1,...,n} denote a family of quality criteria,

• ϕ := (ϕ1, . . . , ϕn) : D × C → Q, where Q := Q1 × · · · × Qn.
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Comparing Classifiers by Generalized Stochastic Dominance

Question of interest: How to utilize our decision-theoretical approach for
comparing classifiers under multiplicity of quality criteria and data sets?

Setup: Let

• D denote the set of all relevant data sets,

• C denote the set of all relevant classifiers,

•
(
ϕi : C × D → Qi

)
i∈{1,...,n} denote a family of quality criteria,

• ϕ := (ϕ1, . . . , ϕn) : D × C → Q, where Q := Q1 × · · · × Qn.

Assumptions:

• All Qi are of at least ordinal scale with preference order ≥i.

• All Qi possess minimal and maximal elements w.r.t. ≥i.

• (Qj)j≤k, where k ≤ n, are of metric scale with metric di : Qi × Qi → R.
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Comparing Classifiers by Generalized Stochastic Dominance

Three levels of problems when comparing classifiers w.r.t. multiple quality
criteria on multiple data sets simultaneously.

classifier
data sets D1 . . . Ds

C1


ϕ1(C1, D1)

...
ϕn(C1, D1)

 . . .


ϕ1(C1, Ds)

...
ϕn(C1, Ds)


...

...
...

...

Cq


ϕ1(Cq, D1)

...
ϕn(Cq, D1)

 . . .


ϕ1(Cq, Ds)

...
ϕn(Cq, Ds)
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Comparing Classifiers by Generalized Stochastic Dominance

Three levels of problems when comparing classifiers w.r.t. multiple quality
criteria on multiple data sets simultaneously.

classifier
data sets D1 . . . Ds

C1


0.8
...
0.7

 . . .


ϕ1(C1, Ds)

...
ϕn(C1, Ds)


...

...
...

...

Cq


0.7
...
0.8

 . . .


ϕ1(Cq, Ds)

...
ϕn(Cq, Ds)



Level 1: On a fixed data set D it may hold

ϕ1(C1,D) > ϕ1(C2,D) ∧ ϕ2(C1,D) < ϕ2(C2,D).
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Comparing Classifiers by Generalized Stochastic Dominance

Three levels of problems when comparing classifiers w.r.t. multiple quality
criteria on multiple data sets simultaneously.

classifier
data sets D1 . . . Ds

C1


0.8
...
0.8

 . . .


0.6
...

ϕn(C1, Ds)


...

...
...

...

Cq


0.7
...
0.7

 . . .


0.9
...

ϕn(Cq, Ds)



Level 2: Even if, for all i ∈ {1, . . . ,n}, we have

ϕi(C1,D1) > ϕi(C2,D1)

there may exists some i0 ∈ {1, . . . ,n} such that

ϕi0(C1,D2) < ϕi0(C2,D2). 26



Comparing Classifiers by Generalized Stochastic Dominance

Three levels of problems when comparing classifiers w.r.t. multiple quality
criteria on multiple data sets simultaneously.

classifier
data sets D1 . . . Ds

C1


0.8
...
0.8

 . . .


0.8
...
0.8


...

...
...

...

Cq


0.7
...
0.7

 . . .


0.7
...
0.7



Level 3: Even if a decision can be made for a sample (D1, . . . ,Ds) of data sets,
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Comparing Classifiers by Generalized Stochastic Dominance

Three levels of problems when comparing classifiers w.r.t. multiple quality
criteria on multiple data sets simultaneously.

classifier
data sets D∗

1 . . . D∗
s

C1


0.7
...
0.9

 . . .


0.75
...
0.4


...

...
...

...

Cq


0.85
...

0.67

 . . .


0.33
...

0.98



Level 3: Even if a decision can be made for a sample (D1, . . . ,Ds) of data sets,
no clear decision might be possible for a different sample (D∗

1 , . . . ,D∗
s ).
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Comparing Classifiers by Generalized Stochastic Dominance

All three levels of problems are at the same time addressed by a generalized
notion of stochastic dominance in our recent paper

Short cut:
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Outline of the Paper

Goal of the project: Framework comparing classifiers w.r.t. multiple quality
criteria on multiple data sets simultaneously and suitable statistical tests.

Motivation:

• Existing approaches mostly not account for multiplicity of criteria.

• Decision-theoretic framework addresses multiplicity naturally.

Main contributions of the paper:

(I) Criterion for comparing classifiers w.r.t. multiple quality criteria on
multiple data sets simultaneously.

(II) An optimization approach for evaluating this criterion.

(III) A statistical test to check in-sample differences for significance.
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Defining the Preference System

We define a preference system on the set of all quality vectors:

Ordinal part:

R1 :=
{
(q, p) ∈ Q×Q : qi ≥i pi for all i = 1, . . . ,n

}

Cardinal (metric) part:

R2 :=
{
((q, p), (r, s)) ∈ R1 × R1 : di(qi, pi) ≥ di(ri, si) for all i = 1, . . . , k

}

Induced preference system:

C = [Q,R1,R2]
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The Criterion of δ-Dominance

We can now transfer the decision criterion from before to our specific setting.

For that, assume the law π generating the data sets from D to be known.

δ-Dominance (theoretical version)
Let C be δ-consistent and C be such that {ϕ(C, ·) : C ∈ C} ⊆ F(C,D).

Call Cj δ-dominated by Ci, if ϕ(Cj, ·) is (C, {π}, δ)-dominated by ϕ(Ci, ·).

Denote the induced binary relation by ≿δ .
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The Criterion of δ-Dominance

We can now transfer the decision criterion from before to our specific setting.

For that, assume the law π generating the data sets from D to be known.

δ-Dominance (theoretical version)
Let C be δ-consistent and C be such that {ϕ(C, ·) : C ∈ C} ⊆ F(C,D).

Call Cj δ-dominated by Ci, if ϕ(Cj, ·) is (C, {π}, δ)-dominated by ϕ(Ci, ·).

Denote the induced binary relation by ≿δ .

Challenge: The true law π on the and the set D will often be inaccessible and
we will only have an i.i.d. sample D1, . . . ,Ds ∼ π of data sets from D.

δ-Dominance (empirical version)
Replace D by D̂s := {D1, . . . ,Ds} and π by the empirical law π̂.

We call Cj δ-dominated (in sample) by Ci, if ϕ(Cj, ·) is (C, {π̂}, δ)-dominated
by ϕ(Ci, ·). Denote the induced binary relation by ≿δ (sloppy!).
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Checking for (in-sample) δ-Dominance

We can adapt our algorithm for checking (in-sample) δ-dominance.

Wlog: ϕ(C × D̂s) = {q1, . . . , qd} s.t. q1 and q2 min and max w.r.t. R1.

Corollary
For Ci, Cj ∈ C, we consider the linear programming problem

d∑
ℓ=1

vℓ · [π̂(ϕ(Ci, ·)−1({qℓ}))− π̂(ϕ(Cj, ·)−1({qℓ}))] −→ min
(v1,...,vd)∈Rd

with constraints (v1, . . . , vd) ∈ ∇δ
C.

Denote by optij the optimal value of this programming problem.

It then holds:
Ci ≿δ Cj ⇔ optij ≥ 0.
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Application Example: Setup

The setup of the application example is as follows:

• We use 16 binary classification benchmark data sets all taken from the
UCI machine learning repository. (see [Dua and Graff, 2017]))

• For classifier comparison, we consider accuracy, AUC and Brier score.

• We compare the algorithms

• Classification and regression trees (CART)
• Random forests (RF)
• Gradient boosted trees (GBM)
• Boosted decision stumps (BDS)
• Generalized linear models (GLM)
• Lasso regression (LASSO)
• Elastic net (EN)
• Ridge regression (RIDGE)

• All three criteria are assumed to be metric.
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Application Example: Results

delta = 0

BDS

CART

EN

GBM

GLMLASSO

RF

RIDGE

delta=0.004

BDS

CART

EN

GBM

GLM

LASSO

RF

RIDGE

delta=0.0077

BDS

CART

EN

GBM

GLM

LASSO

RF

RIDGE

Raising the threshold to 0.004
makes RIDGE dominate both
EN and LASSO.

Raising the threshold to 0.0077
makes GLM dominate RIDGE,
EN and LASSO.
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Discussion: How to address Level 3

Good news: In-sample δ-Dominance resolves the problems appearing at the
Levels 1 and 2 at the same time.
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Discussion: How to address Level 3

Good news: In-sample δ-Dominance resolves the problems appearing at the
Levels 1 and 2 at the same time.

Bad news: Level 3 is still a problem, i.e., changing the sample of data sets will,
in general, change the order among the classifiers!

Idea: Construct a statistical test for checking whether in-sample orderings
are statistically significant. Use optij as a test statistic for a test with the null
hypothesis

H0 : Cj ≿δ Ci
Reject H0 if this value is larger than a critical value c.

Challenge: The distribution of optij cannot be analyzed straightforwardly.

Solution: Use a two-sample observation-randomization test (permutation-
based, non-parametric) instead. (see, e.g., [Pratt and Gibbons, 2012]))
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Resampling Scheme

The procedure for evaluating optij has the following five steps:

Step 1: Produce two separate samples (x1, . . . , xs) and (y1, . . . , ys), where
xl := ϕ(Ci,Dl) and yl := ϕ(Cj,Dl).

Step 2: Take the pooled sample z = (x1, . . . , xs, y1, . . . , ys).

Step 3: Take all I ⊆ {1, . . . , 2s} of size s and compute optIij for the per-
muted data (zi)i∈I and (zi)i∈{1,...,2s}\I.

Step 4: Sort all optIij in increasing order.

Step 5: Reject H0 if optij is greater than the d(1−α) ·
(2s
s
)
e-th value of the

increasingly ordered values optIij, where α is the confidence level.

If
(2s
s
)
is too large, one can alternatively compute optIij only for a large enough

number N of randomly drawn index sets I.
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Application Example: Results for Tests

Results of the resample tests with δ = 10−5 and N = 1000 for all binary
comparisons. A line symbolizes a value strictly below 0.95.

BDS CART EN GBM GLM LASSO RF RIDGE
BDS − 1.000 0.976 − − 0.967 − 0.951
CART − − − − − − − −
EN − 0.998 − − − − − −

GBM 0.998 1.000 0.998 − − 0.999 − 0.997
GLM − 1.000 − − − − − −

LASSO − 0.997 − − − − − −
RF − 1.000 0.953 − − − − −

RIDGE − 0.999 − − − − − −

Significant orders:

BDS

CART

EN

GBM

GLM LASSO

RF

RIDGE

BDS

CART

EN

GBM

GLM LASSO RF RIDGE

without correction for multiple testing with correction for multiple testing
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Simulation: Setup

Seven simulated classifiers C1, . . . , C7 with expected performance θi ∈ [0, 1]2

on two two cardinal quality criteria are compared.

Groundtruth:

θ1 =

(
1
1

)

θ2 = θ1 −

(
η

2η

)
θ3 = θ1 −

(
2η
η

)

θ4 = θ2 −

(
0.5η
0.5η

)
θ5 = θ2 −

(
0.25η
η

)
θ6 = θ3 −

(
η

0.25η

)
θ7 = θ3 −

(
0.5η
0.5η

)

Performances xij of Ci on data set Dj are i.i.d. drawn from a normal distribution,
i.e., xij ∼ N2(θi,Σϵ), where Σϵ = σϵI and σϵ is a noise term.
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Simulation: Competitors

[Demšar, 2006] proposes a test for systematical differences between classifiers
w.r.t. one single quality criterion.

We add two multidimensional adaptations of this test to our study:

all-test: Classifier Ci is considered better than Cj if it performs signifi-
cantly better on each quality criterion w.r.t. the above test.

one-test: Ci is better than Cj if Ci performs significantly better in at least
one dimension and if the converse is not true for any other dimension.

Moreover, we add our proposed test for δ = 0 and δ = 10−5.

Question: Which of the tests performs best in significantly enravelling the
true ordering structure?

37



Simulation: Results (Bonferroni corrected)
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Future Research

There are several promising directions for future research:

• Incorporating classification difficulty: Specifying data set specific loss
functions in advance could account for classification difficulty.

• Reducing computational complexity for special cases: See if costs can
be reduced if more constraints on the preference system are imposed.

• Extension to multi-criteria decision making: Our framework straightfor-
wardly generalizes to multi-criteria decision problems under uncertainty.

• Robustifying comparisons: Framework can straightforwardly be extended
to generalized uncertainty models, making comparisons more robust.
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